diff --git a/src/_impl_boolean_network.rs b/src/_impl_boolean_network.rs index d85da27..03a5fa9 100644 --- a/src/_impl_boolean_network.rs +++ b/src/_impl_boolean_network.rs @@ -1,4 +1,5 @@ use crate::symbolic_async_graph::SymbolicContext; +use crate::Monotonicity::Inhibition; use crate::{ BooleanNetwork, FnUpdate, Monotonicity, Parameter, ParameterId, ParameterIdIterator, RegulatoryGraph, Variable, VariableId, VariableIdIterator, ID_REGEX, @@ -7,6 +8,7 @@ use biodivine_lib_bdd::bdd; use std::collections::{HashMap, HashSet}; use std::ops::Index; use std::path::Path; +use Monotonicity::Activation; /// Basic methods for safely building `BooleanNetwork`s. impl BooleanNetwork { @@ -335,8 +337,8 @@ impl BooleanNetwork { .not(); let monotonicity = match (activation.is_false(), inhibition.is_false()) { - (false, true) => Some(Monotonicity::Activation), - (true, false) => Some(Monotonicity::Inhibition), + (false, true) => Some(Activation), + (true, false) => Some(Inhibition), _ => None, }; @@ -502,6 +504,211 @@ impl BooleanNetwork { new_bn } + + /// Produce a new [BooleanNetwork] where the given [VariableId] `var` has been eliminated + /// by inlining its update function into all downstream variables. + /// + /// The regulatory graph is updated to reflect this change. However, no further analysis + /// of logical consistency is performed. You can use [BooleanNetwork::infer_valid_graph] + /// to clean up the resulting graph if desired (for example, the method will remove any + /// unused regulations should these be introduced by the reduction process). + /// + /// > A simple example where "inconsistent" regulatory graph is produced is the inlining + /// > of a constant input variable `f_a = true` into the update function `f_c = a | b`. + /// > Here, we have regulations `a -> c` and `b -> c`. However, for the inlined function, + /// > we have `f_c = true | b = true`. As such, `b` is no longer observable in `f_c` and + /// > the resulting model is thus not "logically consistent". We need to either fix this + /// > manually, or using [BooleanNetwork::infer_valid_graph]. + /// + /// ### Limitations + /// + /// **At the moment, the reduced variable cannot have a self-regulation.** If such variable + /// is targeted with reduction, the result is `None`. Also, the variable cannot be inlined + /// into uninterpreted functions (see [FnUpdate::substitute_variable]), in which case we also + /// return `None`. We also cannot inline into *missing* update functions, but this is the + /// same as inlining into uninterpreted functions. + /// + /// Note that variables that don't regulate anything (outputs) are simply removed by this + /// reduction (although this is correct behaviour, just not super intuitive). + /// + /// Finally, note that because the set of variables is different between this and the + /// resulting [BooleanNetwork], any [VariableId] that is valid in this network is not + /// valid in the resulting network. + /// + /// ### Logical parameters + /// + /// Finally, note the set of admissible parameter instantiations (interpretations of + /// uninterpreted functions) can change between the original and the reduced model. The reason + /// for this is the same as in the example of a "logically inconsistent" system described + /// above. For example, consider `a -> b` and `b -> c`, but also `a -| c`. Then, let's have + /// `f_b = f(a)` and `f_c = b & !a`. Then `f(a) = a` is the only admissible interpretation + /// of `f`. However, suppose we reduce variable `b`, obtaining `f_c = f(a) & !a` with + /// regulation `a -? c` (because `a -> b -> c` and `a -| c` in the original system). + /// Then `f` can actually be `false`, `a`, or `!a`. + /// + /// This does not mean you cannot use reduction on systems with uninterpreted functions at all, + /// but be careful about the new meaning of the static constraints on these functions. + /// + pub fn inline_variable(&self, var: VariableId) -> Option { + let var_regulators = self.as_graph().regulators(var); + let var_targets = self.as_graph().targets(var); + if var_targets.contains(&var) { + // Cannot inline variable if it is self-regulated. + return None; + } + let new_variables = self + .variables() + .filter(|it| *it != var) + .map(|it| self[it].name.clone()) + .collect::>(); + let mut new_rg = RegulatoryGraph::new(new_variables); + + // First, copy every regulation that does not involve `var` or is not "feed forward". + for reg in self.as_graph().regulations() { + if reg.target == var || reg.regulator == var { + // Skip regulations where `var` is involved. + continue; + } + if var_regulators.contains(®.regulator) && var_targets.contains(®.target) { + // Skip regulations that directly circumvent `var`, because these will be + // recreated in the next step, possibly with different monotonicity/observability. + continue; + } + new_rg + .add_regulation( + self.get_variable_name(reg.regulator), + self.get_variable_name(reg.target), + reg.observable, + reg.monotonicity, + ) + .unwrap(); + } + + // Now, add a new regulation for every combination of the old regulators and targets, + // but also incorporate the old "feed forward" regulations if present. + for old_regulator in &var_regulators { + for old_target in &var_targets { + let old_one = self + .as_graph() + .find_regulation(*old_regulator, var) + .unwrap(); + let old_two = self.as_graph().find_regulation(var, *old_target).unwrap(); + let old_feed_forward = self.as_graph().find_regulation(*old_regulator, *old_target); + + // The new regulation is observable only if both partial regulations are + // observable, or if the feed forward regulation exists and is observable. + let ff_observable = old_feed_forward.map(|it| it.observable); + let new_observable = + (old_one.observable && old_two.observable) || ff_observable.unwrap_or(false); + + let combined_monotonicity = + match (old_one.monotonicity, old_two.monotonicity) { + // ? and anything = ? + (None, _) | (_, None) => None, + // + and + = +, - and - = + + (Some(Activation), Some(Activation)) + | (Some(Inhibition), Some(Inhibition)) => Some(Activation), + // + and - = -, - and + = - + (Some(Activation), Some(Inhibition)) + | (Some(Inhibition), Some(Activation)) => Some(Inhibition), + }; + + let new_monotonicity = + if let Some(ff_monotonicity) = old_feed_forward.map(|it| it.monotonicity) { + // If the feed forward regulation exists, we can only set regulation + // monotonicity if both regulations are the same. + if ff_monotonicity == combined_monotonicity { + combined_monotonicity + } else { + None + } + } else { + // If there is no feed forward regulation, we juse use the new monotonicity. + combined_monotonicity + }; + + new_rg + .add_regulation( + self.get_variable_name(*old_regulator), + self.get_variable_name(*old_target), + new_observable, + new_monotonicity, + ) + .unwrap(); + } + } + + // Finally, we can actually inline the update functions, but as always, this is a bit + // trickier than it sounds, because we have to translate [VariableId] and [ParameterId] + // between the old and the new model. + let mut new_bn = BooleanNetwork::new(new_rg); + + // First, build a map which assigns each "old" variable a "new" variable id. For the erased + // variable, we use an invalid value. + let mut old_to_new_var = Vec::with_capacity(self.num_vars()); + for v in self.variables() { + if v == var { + old_to_new_var.push(VariableId::from_index(usize::MAX)); + } else { + let name = self.get_variable_name(v); + let new_id = new_bn.as_graph().find_variable(name.as_str()).unwrap(); + old_to_new_var.push(new_id); + } + } + + // Then we do the same for parameters. However, since we are only doing inlining, the new + // network will actually contain exactly the same parameters. + let mut old_to_new_param = Vec::with_capacity(self.num_parameters()); + for param in self.parameters() { + let param = &self[param]; + let new_id = new_bn + .add_parameter(param.get_name(), param.get_arity()) + .unwrap(); + old_to_new_param.push(new_id); + } + + // Now we can finally copy all the update functions, possibly inlining them along the way. + let Some(var_function) = self.get_update_function(var).as_ref() else { + // Cannot inline variable with implicit update function. + return None; + }; + + for v in self.variables() { + if v == var { + continue; + } + + let new_id = old_to_new_var[v.to_index()]; + let old_function = self.get_update_function(v).as_ref(); + if !var_targets.contains(&v) { + // This variable is not regulated by `var`, hence we don't need any inlining + // and we can just move the function to the new network. + let new_function = + old_function.map(|it| it.substitute(&old_to_new_var, &old_to_new_param)); + new_bn.set_update_function(new_id, new_function).unwrap(); + } else { + // This variable is regulated by `var`, hence we first need to inline the + // update function and then translate the result into the new network. + let Some(old_function) = old_function else { + // Cannot inline into missing update function. + return None; + }; + let Some(inlined_function) = old_function.substitute_variable(var, var_function) + else { + // We tried to inline the function, but it did not work. Most likely + // because there is an unknown function where + // the variable is used as an argument. + return None; + }; + let new_function = inlined_function.substitute(&old_to_new_var, &old_to_new_param); + new_bn + .set_update_function(new_id, Some(new_function)) + .unwrap(); + } + } + + Some(new_bn) + } } /// Allow indexing `BooleanNetwork` using `VariableId` objects. @@ -606,4 +813,89 @@ mod test { assert!(inlined.find_parameter("e").is_some()); assert!(inlined.find_parameter("fun").is_some()); } + + #[test] + fn test_variable_inlining() { + let bn = BooleanNetwork::try_from( + r" + a -| b + b -| c + a -> c + c -?? a + b -> d + $a: p(c) + $b: !a + $c: !b & a + $d: b + ", + ) + .unwrap(); + + let a = bn.as_graph().find_variable("a").unwrap(); + let b = bn.as_graph().find_variable("b").unwrap(); + let c = bn.as_graph().find_variable("c").unwrap(); + let d = bn.as_graph().find_variable("d").unwrap(); + + // First, a very normal reduction which removes variable `b`. Test combinations + // of different regulation monotonicity. + let expected = BooleanNetwork::try_from( + r" + a -> c + c -?? a + a -| d + $a: p(c) + $c: !!a & a + $d: !a + ", + ) + .unwrap(); + assert_eq!(bn.inline_variable(b), Some(expected)); + + // Then remove `d`, which is an output, so does not connect to anything. + let expected = BooleanNetwork::try_from( + r" + a -| b + b -| c + a -> c + c -?? a + $a: p(c) + $b: !a + $c: !b & a + ", + ) + .unwrap(); + assert_eq!(bn.inline_variable(d), Some(expected)); + + // Reducing `a` should correctly propagate the unknown function. + let expected = BooleanNetwork::try_from( + r" + b -| c + c -?? b + c -?? c + b -> d + $b: !p(c) + $c: !b & p(c) + $d: b + ", + ) + .unwrap(); + assert_eq!(bn.inline_variable(a), Some(expected)); + + // Reducing `c` should fail because it is inlining into an unknown function. + assert_eq!(bn.inline_variable(c), None); + + // Finally, a quick test for self-regulations: + let bn = BooleanNetwork::try_from( + r" + a -> b + b -> a + b -| b + $a: b + $b: !b | a + ", + ) + .unwrap(); + let b = bn.as_graph().find_variable("b").unwrap(); + assert_eq!(bn.inline_variable(b), None); + } }