- Naive Bayes Classifier Basics
- 回忆条件概率,贝叶斯公式与拉普拉斯平滑相关的内容
- 熟悉了
np.unique
的相关操作,返回去重后的结果,也可用return_counts=True
返回各数出现的次数
- 熟悉字典相关操作
- 学会列表的
[:,i]
取出第i列的功能,.append()
加入新元素的用法
- 求字典中最大值的用法
max(sample_probs,key=sample_probs.get)
np.array()
强制转换为np类型
- Codeforces Round 866 (Div. 2)
- 回忆string类型
s.length(),+
用法
- 回忆最长字串的dp写法
- 注意边界问题与memset的时间消耗,以及计算时误改变原数组,浪费几个小时
- 学习mex求法,学习bitset类
bitset<个数>名称
.set()
全部设为1 ._Find_first()
返回第一个1的位置
import numpy as np
class NaiveBayesClassifier(object):
def __init__(self):
'''
self.label_prob表示每种类别在数据中出现的概率
例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
'''
self.label_prob = {}
'''
self.condition_prob表示每种类别确定的条件下各个特征出现的概率
例如训练数据集中的特征为 [[2, 1, 1],
[1, 2, 2],
[2, 2, 2],
[2, 1, 2],
[1, 2, 3]]
标签为[1, 0, 1, 0, 1]
那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
'''
self.condition_prob = {}
def fit(self, feature, label):
#********* Begin *********#
unique_labels,label_cnt=np.unique(label,return_counts=True)
total_samples=len(label)
for x in unique_labels:
self.label_prob[x]=(label_cnt[x]+1)/(total_samples+len(unique_labels))
unique_features = []
for i in range(feature.shape[1]):
unique_features.append(np.unique(feature[:, i]))
for x in unique_labels:
self.condition_prob[x] = {}
for j in range(feature.shape[1]):
self.condition_prob[x][j] = {}
for i in range(feature.shape[0]):
if feature[i][j] not in self.condition_prob[x][j]:
self.condition_prob[x][j][feature[i][j]] = 1
else:
self.condition_prob[x][j][feature[i][j]] += 1
num_classes = len(self.condition_prob[x][j])
total_counts = sum(self.condition_prob[x][j].values())
for key in self.condition_prob[x][j].keys():
self.condition_prob[x][j][key] = (self.condition_prob[x][j][key] + 1) / (total_counts + num_classes)
#********* End *********#
def predict(self, feature):
result = []
# 对每条测试数据都进行预测
for i, f in enumerate(feature):
# 可能的类别的概率
prob = np.zeros(len(self.label_prob.keys()))
ii = 0
for label, label_prob in self.label_prob.items():
# 计算概率
prob[ii] = label_prob
for j in range(len(feature[0])):
prob[ii] *= self.condition_prob[label][j][f[j]]
ii += 1
# 取概率最大的类别作为结果
result.append(list(self.label_prob.keys())[np.argmax(prob)])
return np.array(result)
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfTransformer
def news_predict(train_sample, train_label, test_sample):
#********* Begin *********#
v=CountVectorizer()
x_train = v.fit_transform(train_sample)
x_test = v.transform(test_sample)
t=TfidfTransformer()
x_train_t = t.fit_transform(x_train)
x_test_t = t.transform(x_test)
clf=MultinomialNB(alpha=0.01)
clf.fit(x_train_t,train_label)
predicted=clf.predict(x_test_t)
return predicted
#********* End *********#
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
string s;
cin >> s;
ll ans = 0;
for (ll i = 0; i < s.length(); i++)
{
if (s[i] == '_')
{
if (i == 0)
ans++;
if (s[i - 1] == '_')
ans++;
if (i == s.length() - 1)
ans++;
}
}
if (s.length() == 1 && s[0] == '^')
ans++;
cout << ans << endl;
return;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int tt;
cin >> tt;
while (tt--)
solve();
return 0;
}
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
string s;
cin >> s;
string ss;
ss = s + s;
ll i = 0;
ll mx = 0;
ll len = ss.length();
ll dp[len];
memset(dp, 0, sizeof(dp[0]) * len);
if (ss[0] == '1')
dp[0] = 1;
for (ll i = 1; i < len; i++)
{
if (s[i] == '1')
dp[i] = max(dp[i], ll(1));
if (ss[i] == '1' && ss[i - 1] == '1')
dp[i] = dp[i - 1] + 1;
}
for (ll i = 0; i < len; i++)
{
mx = max(mx, dp[i]);
}
if (mx != len)
mx += 1;
cout << mx / 2 * (mx - mx / 2) << endl;
return;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int tt;
cin >> tt;
while (tt--)
solve();
return 0;
}
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n;
ll a[200010];
ll mmex(ll v[])
{
bitset<200010> vis;
vis.set();
for (int i = 1; i <= n; i++)
if (v[i] <= n)
vis[v[i]] = 0;
return vis._Find_first();
}
void solve()
{
cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
ll mex = mmex(a);
if (!count(a + 1, a + n + 1, mex + 1))
{
if (mex != n)
cout << "Yes\n";
else
cout << "No\n";
return;
}
int bg = 0;
int ed = 0;
for (int i = 1; i <= n; i++)
{
if (a[i] == mex + 1)
{
bg = i;
break;
}
}
for (int i = n; i >= 1; i--)
{
if (a[i] == mex + 1)
{
ed = i;
break;
}
}
for (int i = bg; i <= ed; i++)
{
a[i] = mex;
}
if (mmex(a) == mex + 1)
cout << "Yes\n";
else
cout << "No\n";
return;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int tt;
cin >> tt;
while (tt--)
solve();
return 0;
}