-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate.py
350 lines (287 loc) · 14.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from argparse import ArgumentParser
from PIL import Image
import torch
import torch.utils.data
import numpy as np
import torchvision
from tqdm import tqdm
from nuscenes.nuscenes import NuScenes
import matplotlib
from matplotlib import pyplot as plt
import pathlib
import datetime
import os
import time
from streamingflow.datas.NuscenesData import FuturePredictionDataset
from streamingflow.trainer import TrainingModule
from streamingflow.metrics import IntersectionOverUnion, PanopticMetric, PlanningMetric
from streamingflow.utils.network import preprocess_batch, NormalizeInverse
from streamingflow.utils.instance import predict_instance_segmentation_and_trajectories
from streamingflow.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy
from streamingflow.datas.dataloaders import prepare_dataloaders
def mk_save_dir():
now = datetime.datetime.now()
string = '_'.join(map(lambda x: '%02d' % x, (now.month, now.day, now.hour, now.minute, now.second)))
save_path = pathlib.Path('panop_visualize_imgs') / string
save_path.mkdir(parents=True, exist_ok=False)
return save_path
def eval(checkpoint_path, continuous=False, dataroot=None, n_future_frames=4, draw=False):
if draw:
save_path = mk_save_dir()
trainer = TrainingModule.load_from_checkpoint(checkpoint_path, strict=False)
print(f'Loaded weights from \n {checkpoint_path}')
trainer.eval()
device = torch.device('cuda:0')
trainer.to(device)
model = trainer.model
cfg = model.cfg
cfg.N_FUTURE_FRAMES = n_future_frames
cfg.GPUS = "[0]"
cfg.BATCHSIZE = 1
cfg.DATASET.VERSION = 'trainval'
# cfg.DATASET.VERSION = 'mini'
# cfg.N_WORKERS= 0
if continuous:
cfg.DATASET.NAME = 'nuscenesmultisweep'
cfg.DATASET.VERSION = 'trainval'
if dataroot:
cfg.DATASET.DATAROOT = dataroot
cfg.DATASET.MAP_FOLDER = dataroot
_, valloader = prepare_dataloaders(cfg)
n_classes = len(cfg.SEMANTIC_SEG.VEHICLE.WEIGHTS)
hdmap_class = cfg.SEMANTIC_SEG.HDMAP.ELEMENTS
metric_vehicle_val = IntersectionOverUnion(n_classes).to(device)
future_second = int(cfg.N_FUTURE_FRAMES / 2)
if cfg.SEMANTIC_SEG.PEDESTRIAN.ENABLED:
metric_pedestrian_val = IntersectionOverUnion(n_classes).to(device)
if cfg.SEMANTIC_SEG.HDMAP.ENABLED:
metric_hdmap_val = []
for i in range(len(hdmap_class)):
metric_hdmap_val.append(IntersectionOverUnion(2, absent_score=1).to(device))
if cfg.INSTANCE_SEG.ENABLED:
metric_panoptic_val = PanopticMetric(n_classes=n_classes).to(device)
if cfg.PLANNING.ENABLED:
metric_planning_val = []
for i in range(future_second):
metric_planning_val.append(PlanningMetric(cfg, 2*(i+1)).to(device))
for index, batch in enumerate(tqdm(valloader)):
preprocess_batch(batch, device)
image = batch['image']
intrinsics = batch['intrinsics']
extrinsics = batch['extrinsics']
camera_timestamps = batch['camera_timestamp']
future_egomotion = batch['future_egomotion']
target_timestamp = batch['target_timestamp']
if not trainer.is_lyft:
command = batch['command']
trajs = batch['sample_trajectory']
target_points = batch['target_point']
range_clouds = None
radar_pointclouds = None
padded_voxel_points = None
lidar_timestamps = None
points = None
if trainer.cfg.MODEL.MODALITY.USE_RADAR:
radar_pointclouds = batch['radar_pointclouds']
if trainer.cfg.MODEL.MODALITY.USE_LIDAR:
if trainer.cfg.MODEL.LIDAR.USE_RANGE:
range_clouds = batch['range_clouds']
if trainer.cfg.MODEL.LIDAR.USE_STPN or trainer.cfg.MODEL.LIDAR.USE_BESTI:
padded_voxel_points = batch['padded_voxel_points']
lidar_timestamps = batch['lidar_timestamp']
else:
points = batch['points']
lidar_timestamps = batch['lidar_timestamp']
B = len(image)
labels = trainer.prepare_future_labels(batch)
t0 = time.time()
with torch.no_grad():
output = model(
image, intrinsics, extrinsics, future_egomotion ,padded_voxel_points,camera_timestamps, points, lidar_timestamps, target_timestamp,
)
t1 = time.time()
n_present = model.receptive_field
# semantic segmentation metric
seg_prediction = output['segmentation'].detach()
seg_prediction = torch.argmax(seg_prediction, dim=2, keepdim=True)
metric_vehicle_val(seg_prediction[:, n_present - 1:], labels['segmentation'][:, n_present - 1:])
if cfg.SEMANTIC_SEG.PEDESTRIAN.ENABLED:
pedestrian_prediction = output['pedestrian'].detach()
pedestrian_prediction = torch.argmax(pedestrian_prediction, dim=2, keepdim=True)
metric_pedestrian_val(pedestrian_prediction[:, n_present - 1:],
labels['pedestrian'][:, n_present - 1:])
else:
pedestrian_prediction = torch.zeros_like(seg_prediction)
if cfg.SEMANTIC_SEG.HDMAP.ENABLED:
for i in range(len(hdmap_class)):
hdmap_prediction = output['hdmap'][:, 2 * i:2 * (i + 1)].detach()
hdmap_prediction = torch.argmax(hdmap_prediction, dim=1, keepdim=True)
metric_hdmap_val[i](hdmap_prediction, labels['hdmap'][:, i:i + 1])
if cfg.INSTANCE_SEG.ENABLED:
pred_consistent_instance_seg = predict_instance_segmentation_and_trajectories(
output, compute_matched_centers=False, make_consistent=True
)
metric_panoptic_val(pred_consistent_instance_seg[:, n_present - 1:],
labels['instance'][:, n_present - 1:])
# import ipdb;ipdb.set_trace()
if cfg.PLANNING.ENABLED:
occupancy = torch.logical_or(seg_prediction, pedestrian_prediction)
_, final_traj = model.planning(
cam_front=output['cam_front'].detach(),
trajs=trajs[:, :, 1:],
gt_trajs=labels['gt_trajectory'][:, 1:],
cost_volume=output['costvolume'][:, n_present:].detach(),
semantic_pred=occupancy[:, n_present:].squeeze(2),
hd_map=output['hdmap'].detach(),
commands=command,
target_points=target_points
)
occupancy = torch.logical_or(labels['segmentation'][:, n_present:].squeeze(2),
labels['pedestrian'][:, n_present:].squeeze(2))
for i in range(future_second):
cur_time = (i+1)*2
metric_planning_val[i](final_traj[:,:cur_time].detach(), labels['gt_trajectory'][:,1:cur_time+1], occupancy[:,:cur_time])
t2 = time.time()
n_present_max = output['segmentation'].shape[1]
draw_interval = 20
if draw and index % draw_interval ==0:
# pred_consistent_instance_seg = predict_instance_segmentation_and_trajectories(
# output, compute_matched_centers=False, make_consistent=True
# )
pred_consistent_instance_seg = predict_instance_segmentation_and_trajectories( # do not use instance flow at post-processing
output, compute_matched_centers=False, make_consistent=True
)
for i in range(1, n_present_max):
figure_numpy = plot_prediction(batch, labels, image, output, pred_consistent_instance_seg, i, index,save_path, cfg)
results = {}
scores = metric_vehicle_val.compute()
results['vehicle_iou'] = scores[1]
if cfg.SEMANTIC_SEG.PEDESTRIAN.ENABLED:
scores = metric_pedestrian_val.compute()
results['pedestrian_iou'] = scores[1]
if cfg.SEMANTIC_SEG.HDMAP.ENABLED:
for i, name in enumerate(hdmap_class):
scores = metric_hdmap_val[i].compute()
results[name + '_iou'] = scores[1]
if cfg.INSTANCE_SEG.ENABLED:
scores = metric_panoptic_val.compute()
for key, value in scores.items():
results['vehicle_'+key] = value[1]
if cfg.PLANNING.ENABLED:
for i in range(future_second):
scores = metric_planning_val[i].compute()
for key, value in scores.items():
results['plan_'+key+'_{}s'.format(i+1)]=value.mean()
for key, value in results.items():
print(f'{key} : {value.item()}')
def plot_prediction(batch, labels, image, output, consistent_instance_seg,index_t,frame,save_path,cfg):
# Process predictions
consistent_instance_seg = predict_instance_segmentation_and_trajectories(
output, compute_matched_centers=False
)
segmentation = labels['segmentation'][:, index_t - 1].detach()
# Plot future trajectories
unique_ids = torch.unique(consistent_instance_seg[0, index_t]).cpu().long().numpy()[1:]
instance_map = dict(zip(unique_ids, unique_ids))
instance_colours = generate_instance_colours(instance_map)
vis_image = plot_instance_map(consistent_instance_seg[0, index_t].cpu().numpy(), instance_map)
# trajectory_img = np.zeros(vis_image.shape, dtype=np.uint8)
# for instance_id in unique_ids:
# path = matched_centers[instance_id]
# for t in range(len(path) - 1):
# color = instance_colours[instance_id].tolist()
# cv2.line(trajectory_img, tuple(path[t].astype(int)), tuple(path[t + 1].astype(int)), color, 4)
# # Overlay arrows
# temp_img = cv2.addWeighted(vis_image, 0.7, trajectory_img, 0.3, 1.0)
# mask = ~ np.all(trajectory_img == 0, axis=2)
# vis_image[mask] = temp_img[mask]
# Plot present RGB frames and predictions
val_w = 2.99
cameras = cfg.IMAGE.NAMES
image_ratio = cfg.IMAGE.FINAL_DIM[0] / cfg.IMAGE.FINAL_DIM[1]
val_h = val_w * image_ratio
fig = plt.figure(figsize=(4 * val_w, 2 * val_h))
width_ratios = (val_w, val_w, val_w, val_w)
gs = matplotlib.gridspec.GridSpec(2, 4, width_ratios=width_ratios)
gs.update(wspace=0.0, hspace=0.0, left=0.0, right=1.0, top=1.0, bottom=0.0)
denormalise_img = torchvision.transforms.Compose(
(NormalizeInverse(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
torchvision.transforms.ToPILImage(),)
)
if index_t<=3:
visulize_img = image[0,index_t-1]
else:
visulize_img = image[0,2]
for imgi, img in enumerate(visulize_img):
ax = plt.subplot(gs[imgi // 3, imgi % 3])
showimg = denormalise_img(img.cpu())
if imgi > 2:
showimg = showimg.transpose(Image.FLIP_LEFT_RIGHT)
plt.annotate(cameras[imgi].replace('_', ' ').replace('CAM ', ''), (0.01, 0.87), c='white',
xycoords='axes fraction', fontsize=14)
plt.imshow(showimg)
plt.axis('off')
ax = plt.subplot(gs[:, 3])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.subplots_adjust(top=1,bottom=0,right=1,left=0,hspace=0,wspace=0)
plt.margins(0,0)
plt.imshow(make_contour(vis_image[::-1, ::-1]))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.subplots_adjust(top=1,bottom=0,right=1,left=0,hspace=0,wspace=0)
plt.margins(0,0)
batch['target_timestamp'] = torch.round(batch['target_timestamp'] * 100)/100
timestamps = batch['target_timestamp'].cpu().numpy()
display_time = timestamps[0][index_t-1]
display_time
if index_t<=3:
plt.annotate("Perception at step %.2fs" % display_time, (0.02, 0.95), c='black', xycoords='axes fraction', fontsize=10)
# plt.text(s="Perception step {}s".format(timestamps[0][index_t-1]))
# plt.text(1, 0, s="Perception step {}s".format(timestamps[0][index_t-1]))
else:
plt.annotate("Prediction at step %.2fs" % display_time, (0.02, 0.95), c='black', xycoords='axes fraction', fontsize=10)
plt.axis('off')
# plt.subplot(gs[:, 4])
# showing = torch.zeros((200, 200, 3)).numpy()
# showing[:, :] = np.array([255 / 255, 255 / 255, 255 / 255])
# # drivable
# area = torch.argmax(hdmap[0, 2:4], dim=0).cpu().numpy()
# hdmap_index = area > 0
# showing[hdmap_index] = np.array([161 / 255, 158 / 255, 158 / 255])
# # lane
# area = torch.argmax(hdmap[0, 0:2], dim=0).cpu().numpy()
# hdmap_index = area > 0
# showing[hdmap_index] = np.array([84 / 255, 70 / 255, 70 / 255])
# semantic
# semantic_seg = torch.argmax(segmentation[0], dim=0).cpu().numpy()
# segmentation = segmentation.cpu().numpy()
# # semantic_index = semantic_seg > 0
# semantic_index = segmentation[0,0] > 0
# showing[semantic_index] = np.array([255 / 255, 128 / 255, 0 / 255])
# showing = np.flip(showing)
# pedestrian_seg = torch.argmax(pedestrian[0], dim=0).cpu().numpy()
# pedestrian_index = pedestrian_seg > 0
# showing[pedestrian_index] = np.array([28 / 255, 81 / 255, 227 / 255])
# plt.annotate("GT %.2fs" % display_time, (0.02, 0.95), c='black', xycoords='axes fraction', fontsize=10)
# plt.imshow(make_contour(showing))
# plt.axis('off')
plt.draw()
figure_numpy = convert_figure_numpy(fig)
plt.savefig(os.path.join(save_path,('%04d' % frame) + ('%04d.png' % index_t)))
plt.close()
return figure_numpy
if __name__ == '__main__':
parser = ArgumentParser(description='StreamingFlow evaluation')
parser.add_argument('--checkpoint', default='last.ckpt', type=str, help='path to checkpoint')
parser.add_argument('--dataroot', default=None, type=str)
parser.add_argument('--continuous', default=False, type=bool)
parser.add_argument('--future-frames', default=4, type=int)
args = parser.parse_args()
eval(args.checkpoint, args.continuous, args.dataroot, args.future_frames)
# tensor([0.9852, 0.4515], device='cuda:0')
# {'pq': tensor([0.9852, 0.2483], device='cuda:0'), 'sq': tensor([0.9852, 0.6497], device='cuda:0'), 'rq': tensor([1.0000, 0.3822], device='cuda:0')}