Skip to content

Latest commit

 

History

History
 
 

Step-by-Step

This document is used to list steps of reproducing TensorFlow Intel® Neural Compressor tuning zoo result of DistilBERT base. This example can be run on Intel CPUs and GPUs.

Model Details

This DistilBERT base model is based on the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
The pretrained-model thus used, was taken from Hugging face model repository.
The frozen model pb can be found at Model Zoo for Intel® Architecture.

Dataset Details

We use a part of Stanford Sentiment Treebank corpus for our task. Specifically, the validation split present in the SST2 dataset in the hugging face repository. It contains 872 labeled English sentences. The details for downloading the dataset are given below.

Prerequisite

1. Install Intel® Neural Compressor

pip install neural-compressor

2. Install TensorFlow 2.11.dev202242

Build a TensorFlow pip package from intel-tensorflow spr_ww42 branch and install it. How to build a TensorFlow pip package from source please refer to this tutorial.

3. Install Requirements

pip install -r requirements.txt

4. Install Intel® Extension for TensorFlow

Quantizing the model on Intel GPU:

Intel® Extension for TensorFlow is mandatory to be installed for quantizing the model on Intel GPUs.

pip install --upgrade intel-extension-for-tensorflow[gpu]

Please refer to the Installation Guides for latest Intel GPU driver installation. For any more details, please follow the procedure in install-gpu-drivers.

Quantizing the model on Intel CPU (Experimental):

Intel® Extension for TensorFlow for Intel CPUs is experimental currently. It's not mandatory for quantizing the model on Intel CPUs.

pip install --upgrade intel-extension-for-tensorflow[cpu]

5. Download Dataset

python download_dataset.py --path_to_save_dataset <enter path to save dataset>

Run Command

Run Tuning:

bash run_tuning.sh \
    --input_model=$INPUT_MODEL \
    --dataset_location=$DATASET_DIR \
    --output_model=$OUTPUT_MODEL \
    --batch_size=$BATCH_SIZE \
    --max_seq_length=$MAX_SEQ \
    --warmup_steps=$WARMUPS \
    --num_inter=$INTER_THREADS \
    --num_intra=$INTRA_THREADS

Run Benchmark:

# performance mode: get performance
bash run_benchmark.sh \
    --input_model=$INPUT_MODEL \
    --dataset_location=$DATASET_DIR \
    --mode=performance \
    --batch_size=$BATCH_SIZE \
    --max_seq_length=$MAX_SEQ \
    --iters=$ITERS \
    --warmup_steps=$WARMUPS \
    --num_inter=$INTER_THREADS \
    --num_intra=$INTRA_THREADS
# accuracy mode: get accuracy
bash run_benchmark.sh \
    --input_model=$INPUT_MODEL \
    --dataset_location=$DATASET_DIR \
    --mode=accuracy \
    --batch_size=$BATCH_SIZE \
    --max_seq_length=$MAX_SEQ \
    --warmup_steps=$WARMUPS \
    --num_inter=$INTER_THREADS \
    --num_intra=$INTRA_THREADS

Where (Default values are shown in the square brackets):

  • $INPUT_MODEL ["./distilbert_base_fp32.pb"]-- The path to input FP32 frozen model .pb file to load
  • $DATASET_DIR ["./sst2_validation_dataset"]-- The path to input dataset directory
  • $OUTPUT_MODEL ["./output_distilbert_base_int8.pb"]-- The user-specified export path to the output INT8 quantized model
  • $BATCH_SIZE [128]-- The batch size for model inference
  • $MAX_SEQ [128]-- The maximum total sequence length after tokenization
  • $ITERS [872]-- The number of iterations to run in benchmark mode, maximum value is 872
  • $WARMUPS [10]-- The number of warmup steps before benchmarking the model, maximum value is 22
  • $INTER_THREADS [2]-- The number of inter op parallelism thread to use, which can be set to the number of sockets
  • $INTRA_THREADS [28]-- The number of intra op parallelism thread to use, which can be set to the number of physical core per socket

Details of enabling Intel® Neural Compressor on DistilBERT base for TensorFlow

This is a tutorial of how to enable DistilBERT base model with Intel® Neural Compressor.

User Code Analysis

  1. User specifies fp32 model, calibration dataloader q_dataloader, evaluation dataloader eval_dataloader and metric.

  2. User specifies fp32 model, calibration dataloader q_dataloader and a custom eval_func which encapsulates the evaluation dataloader and metric by itself.

For DistilBERT base, we applied the latter one. The task is to implement the q_dataloader and eval_func.

q_dataloader Part Adaption

Below dataloader class uses generator function to provide the model with input.

class Dataloader(object):
    def __init__(self, data_location, batch_size, steps):
        self.batch_size = batch_size
        self.data_location = data_location
        self.num_batch = math.ceil(steps / batch_size)

    def __iter__(self):
        return self.generate_dataloader(self.data_location).__iter__()

    def __len__(self):
        return self.num_batch

    def generate_dataloader(self, data_location):
        dataset = load_dataset(data_location)
        for batch_id in range(self.num_batch):
            feed_dict, labels = create_feed_dict_and_labels(dataset, batch_id, self.num_batch)
            yield feed_dict, labels

Quantization Config

The Quantization Config class has default parameters setting for running on Intel CPUs. If running this example on Intel GPUs, the 'backend' parameter should be set to 'itex' and the 'device' parameter should be set to 'gpu'.

config = PostTrainingQuantConfig(
    device="gpu",
    backend="itex",
    ...
    )

Code Update

After prepare step is done, we add the code for quantization tuning to generate quantized model.

Tune

    from neural_compressor import quantization
    from neural_compressor.config import PostTrainingQuantConfig, AccuracyCriterion
    accuracy_criterion = AccuracyCriterion(tolerable_loss=0.02)
    config = PostTrainingQuantConfig(calibration_sampling_size=[500],
                                        accuracy_criterion=accuracy_criterion)
    q_model = quantization.fit(model=graph, conf=config, calib_dataloader=self.dataloader,
                    eval_func=self.eval_func)
    try:
        q_model.save(ARGS.output_graph)
    except Exception as e:
        tf.compat.v1.logging.error("Failed to save model due to {}".format(str(e)))

Benchmark

    from neural_compressor.benchmark import fit
    from neural_compressor.config import BenchmarkConfig
    if ARGS.mode == 'performance':
        conf = BenchmarkConfig(cores_per_instance=28, num_of_instance=1)
        fit(graph, conf, b_func=self.eval_func)
    elif ARGS.mode == 'accuracy':
        self.eval_func(graph)

The Intel® Neural Compressor quantization.fit() function will return a best quantized model under time constraint.