-
Notifications
You must be signed in to change notification settings - Fork 0
/
ss-instructions.cpp
337 lines (298 loc) · 13.5 KB
/
ss-instructions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
* Copyright (c) 2014, University of Delaware
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "ss-instructions.h"
#include <cstdlib>
LookupContainer<InstType> instructionSet;
LookupContainer<TaskType> taskSet;
InstType noopInstruction;
FILE* stream;
FILE* instructionTableFile;
TaskQueueType taskPool;
auto fatal(const char *msg) -> void
{
perror(msg);
exit(errno);
}
auto initNoopReference() -> void
{
noopInstruction = instructionSet.lookup("no_op");
}
auto parseTask(char* name) -> TaskType
{
//Open task file.
char inputfile[1024];
const char* SAFE_INPUT_DIRPATH = getenv("SAFE_INPUT_DIRPATH");
//Set default input path if not specified
if (SAFE_INPUT_DIRPATH == 0) {SAFE_INPUT_DIRPATH = "./input"; printf("==> Setting default input folder ./input/ \n");}
sprintf (inputfile, "%s/%s%s", SAFE_INPUT_DIRPATH, name, TASK_FILE_SUFFIX);
FILE* stream = fopen(inputfile, "r");
if(stream == NULL)
fatal(inputfile);
//Read each line of the task file for the details of the task.
TaskType task;
char* line = inputfile; //reuse.
u64 consolidatedInstructions = 0;
InstType megaInst = {0};
std::string megaInstName = "";
u64 numberInstructions = 0;
while (fgets(line, 1024, stream))
{
if(strlen(line) > 0 && line[0] != '\n')
{
std::string instName = strtok(line," \t");
//get the instructions' values from the instructionsMap. Check if it is valid instruction.
auto id = instructionSet.lookup_id(instName); //lookup id.
if ( id != 0 )
{
//grab instruction reference.
auto inst = instructionSet.lookup(id);
//Add information to mega instruction.
megaInstName += instName;
megaInst.type += inst.type*inst.latency;
megaInst.fullStateEnergy += inst.fullStateEnergy;
megaInst.halfStateEnergy += inst.halfStateEnergy;
megaInst.latency += inst.latency;
megaInst.multiplier += inst.multiplier;
consolidatedInstructions++; //Mark that we've got an instruction.
// Check if mega instruction limit reached.
if (consolidatedInstructions == INST_PER_MEGA_INST)
{
//Consolidate mega instruction.
megaInst.latency /= consolidatedInstructions; // correct latency.
megaInst.multiplier /= consolidatedInstructions; // correct multiplier.
megaInst.type /= consolidatedInstructions; // correct type (used to dram port access)
// Add energy and cycles to task.
task.fullEnergy += megaInst.fullStateEnergy*megaInst.latency; //accumulate total possible energy for the task.
task.totalCycles += megaInst.latency;
//Check if mega instruction is part of the instruction set yet if not add.
auto id = instructionSet.lookup_id(megaInstName);
if(id == 0)
id = instructionSet.add(megaInstName, megaInst);
//Add instruction to the ask.
task.instructions.push_back(id);
//Reset mega instruction.
megaInstName = "";
megaInst = {0};
consolidatedInstructions = 0;
}
numberInstructions++;
}
else
{
printf("Unknown instruction: %s in Task: %s \n",instName.c_str(),name);
}
}
}
//Check if mega instruction was being built when the file ended and add it to task if so.
if(consolidatedInstructions != 0)
{
//Consolidate mega instruction.
megaInst.latency /= consolidatedInstructions; // correct latency.
megaInst.multiplier /= consolidatedInstructions; // correct multiplier.
// Add energy and cycles to task.
task.fullEnergy += megaInst.fullStateEnergy*megaInst.latency; //accumulate total possible energy for the task.
task.totalCycles += megaInst.latency;
//Check if mega instruction is part of the instruction set yet if not add.
auto id = instructionSet.lookup_id(megaInstName);
if(id == 0)
id = instructionSet.add(megaInstName, megaInst);
//Add instruction to the ask.
task.instructions.push_back(id);
}
printf(" * Found new task '%s' consisting of %ld instructions...\n", name, numberInstructions);
return task;
}
auto parseInputQueue()-> bool
{
//Read each line of the queue file for each task.
char line[1024];
u64 totalLoadedInstructions=0;
u64 loadedInstructions = 0;
u64 totalCycles = 0;
FLOAT_TYPE totalEnergy = 0.0;
bool loaded = false;
while((!feof(stream)))
{
if(fgets(line, 1024, stream)!=NULL)
{
if(strlen(line) > 0 && line[0] != '\n')
{
char* name = strtok(line," \t");
auto id = taskSet.lookup_id(name);
//Check if task already in task map.
if(id == 0)
{
//Task type not found... load the file
id = taskSet.add(name, parseTask(name));
}
// Grab statistics.
loadedInstructions += taskSet.lookup(id).instructions.size();
totalEnergy += taskSet.lookup(id).fullEnergy;
totalCycles += taskSet.lookup(id).totalCycles;
// Push task ID in task pool.
taskPool.push_back(id);
loaded=true;
}
}
}
totalLoadedInstructions+=loadedInstructions;
initNoopReference(); //static reference to noop
// Print useful stats...;
printf("---------------------------\n");
printf("* Estimated Total Instructions: %ld\n", totalLoadedInstructions*INST_PER_MEGA_INST*TASK_MULTIPLIER);
printf("* Estimated Total Cycles: %ld\n", totalCycles*TASK_MULTIPLIER*INST_PER_MEGA_INST/(N_CORES_IN_BLOCK*N_BLOCKS_IN_UNIT*N_UNITS_IN_CHIP));
printf("* Estimated Total Possible Energy (assuming full operation): %f pJ\n", totalEnergy*TASK_MULTIPLIER);
printf("* Estimated Avg energy per block (assuming full operation): %f pJ\n", totalEnergy*TASK_MULTIPLIER/(N_BLOCKS_IN_UNIT*N_UNITS_IN_CHIP));
printf("* Estimated Avg Possible temperature differential: %f C\n", estimateTemperature(totalEnergy*TASK_MULTIPLIER/(N_BLOCKS_IN_UNIT*N_UNITS_IN_CHIP), totalCycles*TASK_MULTIPLIER/(N_CORES_IN_BLOCK*N_BLOCKS_IN_UNIT*N_UNITS_IN_CHIP)));
return loaded;
}
auto openInstructionsFile(char * name) -> bool
{
//Open queue file.
char inputfile[1024];
const char* SAFE_INPUT_DIRPATH = getenv("SAFE_INPUT_DIRPATH");
if (SAFE_INPUT_DIRPATH == 0) SAFE_INPUT_DIRPATH = "./input";
sprintf (inputfile, "%s/%s%s", SAFE_INPUT_DIRPATH, name, QUEUE_FILE_SUFFIX);
printf("==> Reading work from '%s'...\n", inputfile);
stream = fopen(inputfile, "r");
if(stream == NULL)
{
fatal(inputfile);
return false;
}
return true;
}
auto closeInstructionsFile() -> void
{
if (stream != NULL)
fclose(stream);
}
auto openInstructionsTableFile() -> bool
{
//Open the table where all the instructions' energy are specified.
instructionTableFile = fopen(INSTRUCTION_TABLE_FILE_NAME,"r");
if (instructionTableFile==NULL)
{
fatal(INSTRUCTION_TABLE_FILE_NAME);
return false;
}
return true;
}
auto readInstructionsTable() -> bool
{
//Read the instructions' energy values according to the technology being use. Ignore comment and empty lines
char line[1024];
//Read the whole file
while (!feof(instructionTableFile))
{
//If there is a file to read
if (fgets(line,1024,instructionTableFile)!=NULL)
{
//If the line is not empty, nor a comment or the header it has to be an operation line
if (strlen(line) > 0 && line[0] != '\n' && line[0] != '/' && line[1] != '/')
{
char * op = strtok(line," \t");
u64 type = atoi(strtok(NULL," \t"));
u64 latency = atoi(strtok(NULL," \t"));
FLOAT_TYPE regNum = atof(strtok(NULL," \t"));
FLOAT_TYPE fetch = atof(strtok(NULL," \t"));
FLOAT_TYPE decode = atof(strtok(NULL," \t"));
FLOAT_TYPE issue = atof(strtok(NULL," \t"));
FLOAT_TYPE RF = atof(strtok(NULL," \t"));
FLOAT_TYPE exec = atof(strtok(NULL," \t"));
FLOAT_TYPE msr = atof(strtok(NULL," \t"));
FLOAT_TYPE commit = atof(strtok(NULL," \t"));
//Check if an instruction already exist in the table. If so we just add missing values.
auto id = instructionSet.lookup_id(op);
//Add empty instruction or reference existing instruction.
InstType& inst = (id == 0 ? instructionSet.lookup(instructionSet.add(op)) : instructionSet.lookup(id));
FLOAT_TYPE totalEnergy = fetch + decode + ((1.0 + regNum)*issue) + (regNum * RF) + exec + msr + commit;
if(type==0)
{
// for FULL state.
inst.type = 0;
inst.multiplier=latency; //store full state latency as the multiplier for the instruction.
inst.fullStateEnergy=totalEnergy*(1+STATIC_ENERGY_FACTOR_FULL);
}
else if (type==1)
{
// for actual NTV state.
inst.type = 0;
inst.latency=latency; // Store half state value as actual latency for the instruction.
inst.halfStateEnergy=totalEnergy*(1+STATIC_ENERGY_FACTOR_HALF);
}
else if (type==2)
{
// for memory instructions with no NTV state.
inst.type = 0;
inst.latency=latency; // Store the actual latency for the instruction.
inst.multiplier=1; // Store multiplier as 1 so the time is the same regardless of NTV state.
inst.fullStateEnergy=totalEnergy; // store the same energy for both full and half.
inst.halfStateEnergy=totalEnergy;
}
else if (type==3)
{
// for memory instructions with no NTV state.
inst.type = 1;
inst.latency=latency; // Store the actual latency for the instruction.
inst.multiplier=1; // Store multiplier as 1 so the time is the same regardless of NTV state.
inst.fullStateEnergy=totalEnergy; // store the same energy for both full and half.
inst.halfStateEnergy=totalEnergy;
}
if (inst.multiplier && inst.latency)
{
inst.fullStateEnergy /= (inst.latency / inst.multiplier); // full state energy is divided over the number of 'full' state cycles.
inst.halfStateEnergy /= inst.latency; // half state energy is divided over the number of 'half' state cycles or total latency.
printf(" * Found instruction\t%16s\tenergy: %7.5f, %7.5f\n", op, inst.fullStateEnergy, inst.halfStateEnergy);
}
}
}
}
return true;
}
auto verifyInstructionsTable() -> void
{
// Check instructions. index 0 is empty so skip it.
for(ID_TYPE id = 1; id< instructionSet.size(); id++)
{
auto inst = instructionSet.lookup(id);
if (inst.multiplier == 0 || inst.latency == 0 ||
inst.fullStateEnergy == 0.0 || inst.halfStateEnergy == 0.0)
printf("\n * Error verifying instruction id %d: multiplier %ld, latency %ld, full energy %f, half energy %f...\n",
id, inst.multiplier, inst.latency, inst.fullStateEnergy, inst.halfStateEnergy);
}
}
auto closeInstructionsTableFile() -> void
{
if (instructionTableFile != NULL)
{
fclose(instructionTableFile);
}
}