-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacex_dash_app.py
106 lines (84 loc) · 4.89 KB
/
spacex_dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Import required libraries
import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output
import plotly.express as px
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
# The default select value is for ALL sites
dcc.Dropdown(id='site-dropdown',
options=[
{"label": "All Sites","value": "allofthem"},
{"label": spacex_df["Launch Site"].unique()[0],"value": spacex_df["Launch Site"].unique()[0]},
{"label": spacex_df["Launch Site"].unique()[1],"value": spacex_df["Launch Site"].unique()[1]},
{"label": spacex_df["Launch Site"].unique()[2],"value": spacex_df["Launch Site"].unique()[2]},
{"label": spacex_df["Launch Site"].unique()[3],"value": spacex_df["Launch Site"].unique()[3]}
],
value="ALL",
placeholder="Choose launch site ",
searchable=True
),
html.Br(),
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
# Function decorator to specify function input and output
html.Div(dcc.Graph(id='success-pie-chart')),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
dcc.RangeSlider(id='payload-slider',min=0,max=10000,step=1000,
marks={
0:"0",
2500:"2500",
5000:"5000",
7500:"7500"
},
value=[0,10000]
),
# TASK
#4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
@app.callback(Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value'))
def get_pie_chart(site):
if site == "allofthem":
fig = px.pie(spacex_df, values='class', names='Launch Site',title="total succes lauch by site")
else:
site_df=spacex_df[spacex_df["Launch Site"]== site]
fig = px.pie(site_df, names='class',title="Succes and failure rate in %")
return fig
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property="value")])
def get_scatter(site,payload):
print(payload)
spacex_df.sort_values(by="Payload Mass (kg)", ascending=False,inplace=True)
lower=payload[0]
higher=payload[1]
if site == "allofthem":
payload_df= spacex_df[(spacex_df["Payload Mass (kg)"] < higher) & (spacex_df["Payload Mass (kg)"] > lower)]
scatter = px.scatter(payload_df,x="Payload Mass (kg)",y="class",color="Booster Version",hover_data=['Launch Site'])
else:
site_df=spacex_df[spacex_df["Launch Site"]== site]
payload_df= site_df[(site_df["Payload Mass (kg)"] < higher) & (site_df["Payload Mass (kg)"] > lower)]
scatter = px.scatter(payload_df,x="Payload Mass (kg)",y="class",color="Booster Version",hover_data=['Launch Site'])
return scatter
# Run the app
if __name__ == '__main__':
app.run_server()