-
Notifications
You must be signed in to change notification settings - Fork 43
/
A3C_plusplus.py
454 lines (375 loc) · 16.4 KB
/
A3C_plusplus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# A3C++ a modified version of Asynchronous Advantage actor critic algorithm
# -----------------------------------
#
# A3C paper: https://arxiv.org/abs/1602.01783
#
# The A3C implementation is available at:
# https://jaromiru.com/2017/02/16/lets-make-an-a3c-theory/
# by: Jaromir Janisch, 2017
# Two variations are implemented: A memory replay and a deterministic search following argmax(pi) instead of pi as a probability distribution
# Every action selection is made following the action with the highest probability pi
# Author: Taha Nakabi
# Args: 'train' for training the model anything else will skip the training and try to use already saved models
import tensorflow as tf
import numpy as np
import gym, time, random, threading
from keras.callbacks import TensorBoard
from keras.models import *
from keras.layers import *
from keras import backend as K
from tcl_env_dqn_1 import *
print("after import")
import os
# This is where the models are saved and retrieved from
MODELS_DIRECTORY = 'success01'
# For tensor board
NAME= "A3C++logs/A3C++{}".format(int(time.time()))
# -- constants
# Threading parameters
RUN_TIME = 5000
THREADS = 16
OPTIMIZERS = 2
THREAD_DELAY = 0.000001
# Reinforcement learning parameters
N_STEP_RETURN = 15
GAMMA = 1.0
GAMMA_N = GAMMA ** N_STEP_RETURN
# Epsilon greedy strategy parameters
EPS_START = .5
EPS_STOP = .001
EPS_DECAY = 5e-6
# Memory replay parameters
MIN_BATCH = 200
TR_FREQ = 100
# Advantage actor-critic parameters
LOSS_V = 0.4 # v loss coefficient
LOSS_ENTROPY = 1.0 # entropy coefficient
# Initializing max rewards for models' saving purposes
max_reward = -100.0
# Training iterations and learning rate
TRAINING_ITERATIONS = 1
LEARNING_RATE = 1e-3
# ---------
# The brain class will handle building the neural network, sampling experiences for training and preparing and running the training process.
# ---------
class Brain:
# Memory
train_queue = [[], [], [], [], []] # s, a, r, s', s' terminal mask
train_queue_copy = [[], [], [], [], []] # s, a, r, s', s' terminal mask
lock_queue = threading.Lock()
def __init__(self, **kwargs):
self.env = kwargs.get("environment")
self.learning_rate = kwargs.get('learning_rate', LEARNING_RATE)
self.tr_freq = kwargs.get('training_frequency', TR_FREQ)
self.min_batch = kwargs.get('min_batch', MIN_BATCH)
self.gamman = kwargs.get('gamma_n', GAMMA_N)
self.models_directory = kwargs.get('models_directory', MODELS_DIRECTORY)
self.num_state = self.env.env.observation_space.shape[0]
self.num_tcl =self.env.env.num_tcls
self.num_actions= self.env.env.action_space.n
self.none_state=np.zeros(self.num_state)
tf.compat.v1.disable_eager_execution()
# self.session = tf.compat.v1.Session()
# K.set_session(self.session)
K.manual_variable_initialization(True)
self.model = self._build_model(num_state=self.num_state, num_tcls=self.num_tcl)
self.graph = self._build_graph(self.model)
# self.session.run(tf.compat.v1.global_variables_initializer())
# self.default_graph = tf.compat.v1.get_default_graph()
# We keep track of the best rewards achieved so far for each day
self.max_reward = max_reward
self.rewards = {}
for i in range(self.env.env.day0, self.env.env.dayn):
self.rewards[i] = self.max_reward
# self.default_graph.finalize() # avoid modifications
def _build_model(self, num_state, num_tcls):
l_input = Input(batch_shape=(None,num_state))
print('input shape')
print(format(l_input.shape.as_list()))
# The TCLs states are fed individually to the neural network but they are simply being averaged
l_input1 = Lambda(lambda x: x[:, 0:num_tcls])(l_input)
l_input2 = Lambda(lambda x: x[:, num_tcls:])(l_input)
print(self.env.env.num_tcls)
l_input1 = Reshape((num_tcls, 1))(l_input1)
l_Pool = AveragePooling1D(pool_size=num_tcls)(l_input1)
l_Pool = Reshape([1])(l_Pool)
l_dense = Concatenate()([l_Pool, l_input2])
l_dense = Dense(100, activation='relu')(l_dense)
l_dense = Dropout(0.3)(l_dense)
out = Dense(self.num_actions, activation='softmax')(l_dense)
out_value = Dense(1, activation='linear')(l_dense)
model = Model(inputs=l_input, outputs=[out, out_value])
model._make_predict_function() # have to initialize before threading
return model
def _build_graph(self, model):
s_t = tf.compat.v1.placeholder(tf.float32, shape=(None, self.num_state))
a_t = tf.compat.v1.placeholder(tf.float32, shape=(None, self.num_actions))
r_t = tf.compat.v1.placeholder(tf.float32, shape=(None, 1)) # not immediate, but discounted n step reward
p, v = model(s_t)
log_prob = tf.math.log(tf.reduce_sum(input_tensor=p * a_t, axis=1, keepdims=True) + 1e-10)
advantage = r_t - v
loss_policy = -log_prob * tf.stop_gradient(advantage) # maximize policy
loss_value = LOSS_V * tf.square(advantage) # minimize value error
entropy = LOSS_ENTROPY * (tf.reduce_sum(input_tensor=p * tf.math.log(p + 1e-10), axis=1, keepdims=True))
loss_total = tf.reduce_mean(input_tensor=loss_policy + loss_value + entropy)
optimizer = tf.compat.v1.train.RMSPropOptimizer(self.learning_rate)
minimize = optimizer.minimize(loss_total)
return s_t, a_t, r_t, minimize, loss_total
def optimize(self):
# self.train_queue_copy serves as a counter of the number of observations we make between training sessions
if len(self.train_queue_copy[0])<self.tr_freq or len(self.train_queue_copy[0])<self.min_batch :
time.sleep(0) # yield
return
with self.lock_queue:
if len(self.train_queue_copy[0])<self.tr_freq: # more thread could have passed without lock
return # we can't yield inside lock
# We take a fraction from the memory and throw away the rest, the following experiences are added on top of the sampled experiences.
# This sampling process makes the current memory include old and new experiences. After many sampling iterations the very old experiences will slowly fade and the newest will remain.
self.train_queue = random.sample(np.array(self.train_queue).T.tolist(), self.min_batch)
self.train_queue = np.array(self.train_queue).T.tolist()
s, a, r, s_, s_mask = self.train_queue_copy
self.train_queue_copy = [[], [], [], [], []]
s = np.vstack(s)
a = np.vstack(a)
r = np.vstack(r)
s_ = np.vstack(s_)
s_mask = np.vstack(s_mask)
if len(s) > 5 * self.min_batch: print("Optimizer alert! Minimizing batch of %d" % len(s))
v = self.predict_v(s_)
r = r + self.gamman * v * s_mask # set v to 0 where s_ is terminal state
s_t, a_t, r_t, minimize, loss = self.graph
print("Training...")
# for _ in range(TRAINING_ITERATIONS):
minimize(s,a,r)
# self.session.run([minimize,loss], feed_dict={s_t: s, a_t: a, r_t: r})
print("Done...")
# pushing experiences into the memory
def train_push(self, s, a, r, s_):
with self.lock_queue:
self.train_queue[0].append(s)
self.train_queue[1].append(a)
self.train_queue[2].append(r)
self.train_queue_copy[0].append(s)
self.train_queue_copy[1].append(a)
self.train_queue_copy[2].append(r)
if s_ is None:
self.train_queue[3].append(self.none_state)
self.train_queue[4].append(0.)
self.train_queue_copy[3].append(self.none_state)
self.train_queue_copy[4].append(0.)
else:
self.train_queue[3].append(s_)
self.train_queue[4].append(1.)
self.train_queue_copy[3].append(s_)
self.train_queue_copy[4].append(1.)
def predict(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return p, v
def predict_p(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return p
def predict_p_vote(self, s):
# Boost learning. Several versions of the successfull models are voting for the best action
votes=[]
# print('retreiving models from {}'.format(self.models_directory))
for filename in os.listdir(self.models_directory):
if filename.endswith(".h5"):
# print(filename)
# with self.default_graph.as_default():
try:
# print('trying to load weights')
self.model.load_weights(self.models_directory+"/"+filename)
# print('weights loaded')
p = self.model.predict(s)[0][0]
# print('probability predicted')
# votes.append(p)
votes.append(ACTIONS[np.argmax(p)])
except :
print(filename+"didn't vote!")
pass
boosted_p = np.average(np.array(votes),axis=0)
return np.rint(boosted_p).astype(int)
# return ACTIONS[np.argmax(boosted_p)]
def predict_v(self, s):
# with self.default_graph.as_default():
p, v = self.model.predict(s)
return v
# ---------
# The agent handles the interactions with the environment and the selection of actions, stocking and retreiving experiences from the memory.
# ---------
frames = 0
class Agent:
def __init__(self, eps_start, eps_end, eps_decay, num_actions):
self.eps_start = eps_start
self.eps_end = eps_end
self.eps_decay = eps_decay
self.memory = [] # used for n_step return
self.R = 0.
self.num_actions = num_actions
def getEpsilon(self):
return max(self.eps_start - frames * self.eps_decay,self.eps_end) # linearly interpolate
def act(self, s,render=False, br=None):
global frames, brain
if br != None:
brain = br
eps = self.getEpsilon()
frames = frames + 1
# Epsilon-greedy strategy:
if random.random() < eps:
p = np.random.dirichlet(np.ones(self.num_actions), size=1)
else:
s = np.array([s])
if render:
print('starting the vote')
a = brain.predict_p_vote(s)
p= np.random.dirichlet(np.ones(self.num_actions), size=1)
print(a)
return list(a),p
p = brain.predict_p(s)
# In the original version, the action selection follows a stochasic policy as follows:
# a = np.random.choice(NUM_ACTIONS, p=p.reshape(NUM_ACTIONS,))
# We follow a deterministic policy as follow:
a = np.argmax(p.reshape(self.num_actions,))
return a,p
def train(self, s, a, r, s_):
def get_sample(memory, n):
s, a, _, _ = memory[0]
_, _, _, s_ = memory[n - 1]
return s, a, self.R, s_
a_cats = a
# a_cats[a] = 1
self.memory.append((s, a_cats, r, s_))
self.R = (self.R + r * GAMMA_N) / GAMMA
if s_ is None:
while len(self.memory) > 0:
n = len(self.memory)
s, a, r, s_ = get_sample(self.memory, n)
brain.train_push(s, a, r, s_)
self.R = (self.R - self.memory[0][2]) / GAMMA
self.memory.pop(0)
self.R = 0
if len(self.memory) >= N_STEP_RETURN:
s, a, r, s_ = get_sample(self.memory, N_STEP_RETURN)
brain.train_push(s, a, r, s_)
self.R = self.R - self.memory[0][2]
self.memory.pop(0)
# possible edge case - if an episode ends in <N steps, the computation is incorrect
# ---------
# The environment here is defined as a thread so that we can run the algorithm as a multi-thread process
# ---------
class Environment(threading.Thread):
stop_signal = False
def __init__(self, render=False, eps_start=EPS_START, eps_end=EPS_STOP, eps_decay=EPS_DECAY, **kwargs):
threading.Thread.__init__(self)
self.render = render
self.env = MicroGridEnv(**kwargs)
self.agent = Agent(eps_start, eps_end, eps_decay,num_actions=self.env.action_space.n)
self.brain = None
def runEpisode(self,day=None, pplt=True, web = False):
# print('resetting the environment')
if web==False:
s = self.env.reset_all(day=day)
else:
s = self.env.reset(day=day)
R = 0
while True:
time.sleep(THREAD_DELAY) # yield
# print('Acting')
a, p = self.agent.act(s,self.render, self.brain)
# print('stepping')
s_, r, done, _ = self.env.step(a)
R += r
# print('rendering')
if self.render:
self.env.render(R)
if done: # terminal state
s_ = None
if not self.render:
aa = np.zeros(shape=(NUM_ACTIONS,))
aa[a] = 1
self.agent.train(s, aa, r, s_)
s = s_
if done:
break
print("episode has been ran")
print(R)
if web==False:
REWARDS[self.env.day].append(R)
if self.render:
return R
if R > brain.rewards[self.env.day] and self.agent.getEpsilon()<0.2:
print('new max found: '+str(R))
print("-------------------------------------------------------------------------------------------------")
try:
# Uncomment the following line for tensorboard
writer = tf.compat.v1.summary.FileWriter(NAME, brain.session.graph)
brain.model.save(MODELS_DIRECTORY+"/A3C++" + str(self.env.day) + ".h5")
print("Model saved")
except:
pass
brain.rewards[self.env.day] = R
def run(self):
while not self.stop_signal:
self.runEpisode()
def stop(self):
self.stop_signal = True
# ---------
class Optimizer(threading.Thread):
stop_signal = False
def __init__(self):
threading.Thread.__init__(self)
def run(self):
while not self.stop_signal:
brain.optimize()
def stop(self):
self.stop_signal = True
if __name__ =="__main__":
import sys
TRAIN=False
if str(sys.argv[1]) == 'train':
TRAIN = True
DAY0 = 0
DAYN = 10
REWARDS = {}
for i in range(DAY0,DAYN):
REWARDS[i]=[]
env_test = Environment(render=True, eps_start=0., eps_end=0., day0=DAY0, dayn=DAYN, iterations=100)
NUM_STATE = env_test.env.observation_space.shape[0]
NUM_ACTIONS = env_test.env.action_space.n
NONE_STATE = np.zeros(NUM_STATE)
brain = Brain(environment=env_test) # brain is global in A3C
if TRAIN:
envs = [Environment(day0=DAY0, dayn=DAYN) for i in range(THREADS)]
opts = [Optimizer() for i in range(OPTIMIZERS)]
t0=time.time()
for o in opts:
o.start()
for e in envs:
e.start()
time.sleep(RUN_TIME)
for e in envs:
e.stop()
for e in envs:
e.join()
for o in opts:
o.stop()
for o in opts:
o.join()
brain.model.save("success00/A3C++" + ".h5")
print("Training finished")
print('training_time:', time.time()-t0)
# Save the rewards' list for each day
import pickle
with open("REWARDS_A3C++train.pkl", 'wb') as f:
pickle.dump(REWARDS, f, pickle.HIGHEST_PROTOCOL)
try:
for day in range(DAY0,DAYN):
env_test.runEpisode(day)
print("average reward: ",np.average([list(REWARDS[i])[-1] for i in range(DAY0,DAYN)]))
import pickle
# with open("REWARDS_A3C++test.pkl", 'wb') as f:
# pickle.dump(REWARDS, f, pickle.HIGHEST_PROTOCOL)
except NameError:
print(NameError)