-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathDQN.py
217 lines (166 loc) · 6.43 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# DQN a modified version of DQN algorithm
# To solve the problem of migrogrid's energy management
# -----------------------------------
# The DQN implementation is available at:
# https://jaromiru.com/2017/02/16/lets-make-an-a3c-theory/
# by: Jaromir Janisch, 2017
# Adapted to solve the problem of microgrid energy management
# Author: Taha Nakabi
import random, numpy, math, gym
# -------------------- BRAIN ---------------------------
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
from keras.models import *
from keras.layers import *
from keras import backend as K
DAY0 = 50
DAYN = 60
REWARDS = {}
for i in range(DAY0,DAYN,1):
REWARDS[i]=[]
class Brain:
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.model = self._createModel()
def _createModel(self):
l_input = Input(batch_shape=(None, self.stateCnt))
l_input1 = Lambda(lambda x: x[:, 0:self.stateCnt - 7])(l_input)
l_input2 = Lambda(lambda x: x[:, -7:])(l_input)
l_input1 = Reshape((DEFAULT_NUM_TCLS, 1))(l_input1)
l_Pool = AveragePooling1D(pool_size=self.stateCnt - 7)(l_input1)
l_Pool = Reshape([1])(l_Pool)
l_dense = Concatenate()([l_Pool, l_input2])
l_dense = Dense(100, activation='relu')(l_dense)
l_dense = Dropout(0.3)(l_dense)
out_value = Dense(80, activation='linear')(l_dense)
# model = Model(inputs=l_input, outputs=[out_tcl_actions,out_price_actions,out_deficiency_actions,out_excess_actions, out_value])
model = Model(inputs=l_input, outputs=out_value)
model._make_predict_function()
opt = RMSprop(lr=0.00025)
model.compile(loss='mse', optimizer=opt)
return model
def train(self, x, y, epoch=1, verbose=0):
self.model.fit(x, y, batch_size=100, epochs=epoch, verbose=verbose)
def predict(self, s):
return self.model.predict(s)
def predictOne(self, s):
return self.predict(s.reshape(1, self.stateCnt)).flatten()
# -------------------- MEMORY --------------------------
class Memory: # stored as ( s, a, r, s_ )
samples = []
def __init__(self, capacity):
self.capacity = capacity
def add(self, sample):
self.samples.append(sample)
if len(self.samples) > self.capacity:
self.samples.pop(0)
def sample(self, n):
n = min(n, len(self.samples))
return random.sample(self.samples, n)
# -------------------- AGENT ---------------------------
MEMORY_CAPACITY = 500
BATCH_SIZE = 200
GAMMA = 1.0
# MAX_EPSILON = 0.4
# MIN_EPSILON = 0.004
# LAMBDA =5e-5 # speed of decay
class Agent:
steps = 0
# epsilon = MAX_EPSILON
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.brain = Brain(stateCnt, actionCnt)
self.memory = Memory(MEMORY_CAPACITY)
def act(self, s, deter):
if deter == True:
return numpy.argmax(self.brain.predictOne(s))
# if random.random() < self.epsilon:
return random.randint(0, self.actionCnt - 1)
# return numpy.argmax(self.brain.predictOne(s))
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
# # slowly decrease Epsilon based on our eperience
# self.steps += 1
# self.epsilon = max(MAX_EPSILON -LAMBDA * self.steps, MIN_EPSILON)
# print(self.epsilon)
def replay(self):
batch = self.memory.sample(BATCH_SIZE)
batchLen = len(batch)
no_state = numpy.zeros(self.stateCnt)
states = numpy.array([o[0] for o in batch])
states_ = numpy.array([(no_state if o[3] is None else o[3]) for o in batch])
p = self.brain.predict(states)
p_ = self.brain.predict(states_)
x = numpy.zeros((batchLen, self.stateCnt))
y = numpy.zeros((batchLen, self.actionCnt))
for i in range(batchLen):
o = batch[i]
s = o[0];
a = o[1];
r = o[2];
s_ = o[3]
t = p[i]
if s_ is None:
t[a] = r
else:
t[a] = r + GAMMA * numpy.amax(p_[i])
x[i] = s
y[i] = t
self.brain.train(x, y)
# -------------------- ENVIRONMENT ---------------------
from tcl_env_dqn_1 import *
class Environment:
def __init__(self, render = False):
self.env = MicroGridEnv()
self.render=render
def run(self, agent, day=None):
s = self.env.reset(day0=DAY0, dayn=DAYN, day= day)
R = 0
while True:
# if self.render: self.env.render()
a = agent.act(s,deter=self.render)
s_, r, done, info = self.env.step(a)
if done: # terminal state
s_ = None
agent.observe((s, a, r, s_))
if not self.render:
agent.replay()
s = s_
R += r
if done:
# if self.render: self.env.render()
break
REWARDS[self.env.day].append(R)
print("Day ", self.env.day)
print("R= ", R)
# -------------------- MAIN ----------------------------
if __name__=="__main__":
# PROBLEM = TCLEnv
env = Environment()
stateCnt = env.env.observation_space.shape[0]
actionCnt = env.env.action_space.n
agent = Agent(stateCnt, actionCnt)
import pickle
import time
t0=time.time()
# for _ in range(1000):
# env.run(agent)
# print('training_time:', time.time()-t0)
# agent.brain.model.save_weights("DQN.h5")
# with open("REWARDS_DQN.pkl",'wb') as f:
# pickle.dump(REWARDS,f,pickle.HIGHEST_PROTOCOL)
# for rew in REWARDS.values():
# print(np.average(list(rew)))
# pyplot.plot(list(rew))
# pyplot.legend(["Day {}".format(i) for i in range(DAY0,DAY0)], loc = 'upper right')
# pyplot.show()
agent.brain.model.load_weights("DQN.h5")
env_test=Environment(render=True)
for day in range(DAY0,DAYN):
env_test.run(agent,day=day)
print(np.average([list(REWARDS[i])[-1] for i in range(DAY0,DAYN)]))
with open("REWARDS_DQN.pkl", 'wb') as f:
pickle.dump(REWARDS,f,pickle.HIGHEST_PROTOCOL)