-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBitSet.cs
736 lines (627 loc) · 24.1 KB
/
BitSet.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/* BitSet.cs -- A vector of bits.
Copyright (C) 1998, 1999, 2000, 2001, 2004, 2005 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
* hashCode algorithm taken from JDK 1.2 docs.
*/
// Source ported to C# from: http://fuseyism.com/classpath/doc/java/util/BitSet-source.html
using System;
using System.Text;
using UnityEngine.Assertions;
namespace Binocle
{
/// <summary>
/// This class can be thought of in two ways. You can see it as a vector of bits or as a set of non-negative integers. The name
/// <code>BitSet</code> is a bit misleading.
///
/// It is implemented by a bit vector, but its equally possible to see it as set of non-negative integer; each integer in the set is
/// represented by a set bit at the corresponding index. The size of this structure is determined by the highest integer in the set.
///
/// You can union, intersect and build (symmetric) remainders, by invoking the logical operations and, or, andNot, resp. xor.
///
/// This implementation is NOT synchronized against concurrent access from multiple threads. Specifically, if one thread is reading from a bitset
/// while another thread is simultaneously modifying it, the results are undefined.
///
/// author Jochen Hoenicke
/// author Tom Tromey ([email protected])
/// author Eric Blake ([email protected])
/// status updated to 1.4
/// </summary>
public class BitSet
{
const long serialVersionUID = 7997698588986878753L;
/// <summary>
/// A common mask.
/// </summary>
const int LONG_MASK = 0x3f;
/// <summary>
/// The actual bits.
/// @serial the i'th bit is in bits[i/64] at position i%64 (where position
/// 0 is the least significant).
/// </summary>
long[] bits;
/// <summary>
/// Create a new empty bit set. All bits are initially false.
/// </summary>
public BitSet() : this(64)
{ }
/// <summary>
/// Create a new empty bit set, with a given size. This
/// constructor reserves enough space to represent the integers
/// from <code>0</code> to <code>nbits-1</code>.
/// </summary>
/// <param name="nbits">nbits the initial size of the bit set</param>
public BitSet(int nbits)
{
Assert.IsFalse(nbits < 0, "nbits may not be negative");
var length = (uint)nbits >> 6;
if ((nbits & LONG_MASK) != 0)
length++;
bits = new long[length];
}
/// <summary>
/// Performs the logical AND operation on this bit set and the
/// given <code>set</code>. This means it builds the intersection
/// of the two sets. The result is stored into this bit set.
/// </summary>
/// <param name="bs">the second bit set</param>
public void and(BitSet bs)
{
var max = Math.Min(bits.Length, bs.bits.Length);
int i;
for (i = 0; i < max; ++i)
bits[i] &= bs.bits[i];
while (i < bits.Length)
bits[i++] = 0;
}
/// <summary>
/// Performs the logical AND operation on this bit set and the
/// complement of the given <code>bs</code>. This means it
/// selects every element in the first set, that isn't in the
/// second set. The result is stored into this bit set and is
/// effectively the set difference of the two.
/// </summary>
/// <param name="bs">the second bit set</param>
public void andNot(BitSet bs)
{
var i = Math.Min(bits.Length, bs.bits.Length);
while (--i >= 0)
bits[i] &= ~bs.bits[i];
}
/// <summary>
/// Returns the number of bits set to true.
/// </summary>
public int cardinality()
{
uint card = 0;
for (var i = bits.Length - 1; i >= 0; i--)
{
var a = bits[i];
// Take care of common cases.
if (a == 0)
continue;
if (a == -1)
{
card += 64;
continue;
}
// Successively collapse alternating bit groups into a sum.
a = ((a >> 1) & 0x5555555555555555L) + (a & 0x5555555555555555L);
a = ((a >> 2) & 0x3333333333333333L) + (a & 0x3333333333333333L);
var b = (uint)((a >> 32) + a);
b = ((b >> 4) & 0x0f0f0f0f) + (b & 0x0f0f0f0f);
b = ((b >> 8) & 0x00ff00ff) + (b & 0x00ff00ff);
card += ((b >> 16) & 0x0000ffff) + (b & 0x0000ffff);
}
return (int)card;
}
/// <summary>
/// Sets all bits in the set to false.
/// </summary>
public void clear()
{
for (var i = 0; i < bits.Length; i++)
bits[i] = 0;
}
/// <summary>
/// Removes the integer <code>pos</code> from this set. That is
/// the corresponding bit is cleared. If the index is not in the set,
/// this method does nothing.
/// </summary>
/// <param name="pos">a non-negative integer</param>
public void clear(int pos)
{
int offset = pos >> 6;
ensure(offset);
bits[offset] &= ~(1L << pos);
}
/// <summary>
/// Sets the bits between from (inclusive) and to (exclusive) to false.
/// </summary>
/// <param name="from">the start range (inclusive)</param>
/// <param name="to">the end range (exclusive)</param>
public void clear(int from, int to)
{
if (from < 0 || from > to)
throw new ArgumentOutOfRangeException();
if (from == to)
return;
var lo_offset = (uint)from >> 6;
var hi_offset = (uint)to >> 6;
ensure((int)hi_offset);
if (lo_offset == hi_offset)
{
bits[hi_offset] &= ((1L << from) - 1) | (-1L << to);
return;
}
bits[lo_offset] &= (1L << from) - 1;
bits[hi_offset] &= -1L << to;
for (int i = (int)lo_offset + 1; i < hi_offset; i++)
bits[i] = 0;
}
/// <summary>
/// Create a clone of this bit set, that is an instance of the same
/// class and contains the same elements. But it doesn't change when
/// this bit set changes.
/// </summary>
/// <returns>the clone of this object.</returns>
public object clone()
{
try
{
var bs = new BitSet();
bs.bits = (long[])bits.Clone();
return bs;
}
catch
{
// Impossible to get here.
return null;
}
}
/// <summary>
/// Sets the bit at the index to the opposite value.
/// </summary>
/// <param name="index">the index of the bit</param>
public void flip(int index)
{
var offset = index >> 6;
ensure(offset);
bits[offset] ^= 1L << index;
}
/// <summary>
/// Sets a range of bits to the opposite value.
/// </summary>
/// <param name="from">the low index (inclusive)</param>
/// <param name="to">the high index (exclusive)</param>
public void flip(int from, int to)
{
if (from < 0 || from > to)
throw new ArgumentOutOfRangeException();
if (from == to)
return;
var lo_offset = (uint)from >> 6;
var hi_offset = (uint)to >> 6;
ensure((int)hi_offset);
if (lo_offset == hi_offset)
{
bits[hi_offset] ^= (-1L << from) & ((1L << to) - 1);
return;
}
bits[lo_offset] ^= -1L << from;
bits[hi_offset] ^= (1L << to) - 1;
for (int i = (int)lo_offset + 1; i < hi_offset; i++)
bits[i] ^= -1;
}
/// <summary>
/// Returns true if the integer <code>bitIndex</code> is in this bit
/// set, otherwise false.
/// </summary>
/// <param name="pos">a non-negative integer</param>
/// <returns>the value of the bit at the specified position</returns>
public Boolean get(int pos)
{
int offset = pos >> 6;
if (offset >= bits.Length)
return false;
return (bits[offset] & (1L << pos)) != 0;
}
/// <summary>
/// Returns a new <code>BitSet</code> composed of a range of bits from
/// this one.
/// </summary>
/// <param name="from">the low index (inclusive)</param>
/// <param name="to">the high index (exclusive)</param>
/// <returns></returns>
public BitSet get(int from, int to)
{
if (from < 0 || from > to)
throw new ArgumentOutOfRangeException();
var bs = new BitSet(to - from);
var lo_offset = (uint)from >> 6;
if (lo_offset >= bits.Length || to == from)
return bs;
var lo_bit = from & LONG_MASK;
var hi_offset = (uint)to >> 6;
if (lo_bit == 0)
{
var len = Math.Min(hi_offset - lo_offset + 1, (uint)bits.Length - lo_offset);
Array.Copy(bits, (int)lo_offset, bs.bits, 0, (int)len);
if (hi_offset < bits.Length)
bs.bits[hi_offset - lo_offset] &= (1L << to) - 1;
return bs;
}
var len2 = Math.Min(hi_offset, (uint)bits.Length - 1);
var reverse = 64 - lo_bit;
int i;
for (i = 0; lo_offset < len2; lo_offset++, i++)
bs.bits[i] = ((bits[lo_offset] >> lo_bit) | (bits[lo_offset + 1] << reverse));
if ((to & LONG_MASK) > lo_bit)
bs.bits[i++] = bits[lo_offset] >> lo_bit;
if (hi_offset < bits.Length)
bs.bits[i - 1] &= (1L << (to - from)) - 1;
return bs;
}
/// <summary>
/// Returns true if the specified BitSet and this one share at least one
/// common true bit.
/// </summary>
/// <param name="set">the set to check for intersection</param>
/// <returns>true if the sets intersect</returns>
public bool intersects(BitSet set)
{
var i = Math.Min(bits.Length, set.bits.Length);
while (--i >= 0)
{
if ((bits[i] & set.bits[i]) != 0)
return true;
}
return false;
}
/// <summary>
/// Returns true if this set contains no true bits.
/// </summary>
/// <returns>true if all bits are false</returns>
public bool isEmpty()
{
for (var i = bits.Length - 1; i >= 0; i--)
{
if (bits[i] != 0)
return false;
}
return true;
}
/// <summary>
/// Gets the logical number of bits actually used by this bit
/// set. It returns the index of the highest set bit plus one.
/// Note that this method doesn't return the number of set bits.
///
/// Returns the index of the highest set bit plus one.
/// </summary>
public int length
{
get
{
// Set i to highest index that contains a non-zero value.
int i;
for (i = bits.Length - 1; i >= 0 && bits[i] == 0; --i)
{ }
// if i < 0 all bits are cleared.
if (i < 0)
return 0;
// Now determine the exact length.
var b = bits[i];
var len = (i + 1) * 64;
// b >= 0 checks if the highest bit is zero.
while (b >= 0)
{
--len;
b <<= 1;
}
return len;
}
}
/// <summary>
/// Returns the number of bits actually used by this bit set. Note that this method doesn't return the number of set bits, and that
/// future requests for larger bits will make this automatically grow.
///
/// Returns the number of bits currently used.
/// </summary>
public int size
{
get { return bits.Length * 64; }
}
/// <summary>
/// Returns the index of the next false bit, from the specified bit
/// (inclusive).
/// </summary>
/// <param name="from">the start location</param>
/// <returns>the first false bit</returns>
public int nextClearBit(int from)
{
var offset = from >> 6;
var mask = 1L << from;
while (offset < bits.Length)
{
long h = bits[offset];
do
{
if ((h & mask) == 0)
return from;
mask <<= 1;
from++;
} while (mask != 0);
mask = 1;
offset++;
}
return from;
}
/// <summary>
/// Returns the index of the next true bit, from the specified bit
/// (inclusive). If there is none, -1 is returned. You can iterate over
/// all true bits with this loop:<br>
///
/// <pre>for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i + 1))
/// {
/// // operate on i here
/// }
/// </pre>
/// </summary>
/// <param name="from">the start location</param>
/// <returns>the first true bit, or -1</returns>
public int nextSetBit(int from)
{
var offset = from >> 6;
var mask = 1L << from;
while (offset < bits.Length)
{
long h = bits[offset];
do
{
if ((h & mask) != 0)
return from;
mask <<= 1;
from++;
} while (mask != 0);
mask = 1;
offset++;
}
return -1;
}
/// <summary>
/// Add the integer <code>bitIndex</code> to this set. That is
/// the corresponding bit is set to true. If the index was already in
/// the set, this method does nothing. The size of this structure
/// is automatically increased as necessary.
/// </summary>
/// <param name="pos">a non-negative integer.</param>
public void set(int pos)
{
var offset = pos >> 6;
ensure(offset);
bits[offset] |= 1L << pos;
}
/// <summary>
/// Sets the bit at the given index to the specified value. The size of
/// this structure is automatically increased as necessary.
/// </summary>
/// <param name="index">the position to set</param>
/// <param name="value">the value to set it to</param>
public void set(int index, bool value)
{
if (value)
this.set(index);
else
this.clear(index);
}
/// <summary>
/// Sets the bits between from (inclusive) and to (exclusive) to true.
/// </summary>
/// <param name="from">the start range (inclusive)</param>
/// <param name="to">the end range (exclusive)</param>
public void set(int from, int to)
{
if (from < 0 || from > to)
throw new ArgumentOutOfRangeException();
if (from == to)
return;
var lo_offset = (uint)from >> 6;
var hi_offset = (uint)to >> 6;
ensure((int)hi_offset);
if (lo_offset == hi_offset)
{
bits[hi_offset] |= (-1L << from) & ((1L << to) - 1);
return;
}
bits[lo_offset] |= -1L << from;
bits[hi_offset] |= (1L << to) - 1;
for (int i = (int)lo_offset + 1; i < hi_offset; i++)
bits[i] = -1;
}
/// <summary>
/// Sets the bits between from (inclusive) and to (exclusive) to the
/// specified value.
/// </summary>
/// <param name="from">the start range (inclusive)</param>
/// <param name="to">the end range (exclusive)</param>
/// <param name="value">the value to set it to</param>
public void set(int from, int to, bool value)
{
if (value)
this.set(from, to);
else
this.clear(from, to);
}
/// <summary>
/// Performs the logical XOR operation on this bit set and the
/// given <code>set</code>. This means it builds the symmetric
/// remainder of the two sets (the elements that are in one set,
/// but not in the other). The result is stored into this bit set,
/// which grows as necessary.
/// </summary>
/// <param name="bs">the second bit set</param>
public void xor(BitSet bs)
{
ensure(bs.bits.Length - 1);
for (int i = bs.bits.Length - 1; i >= 0; i--)
bits[i] ^= bs.bits[i];
}
/// <summary>
/// Performs the logical OR operation on this bit set and the
/// given <code>set</code>. This means it builds the union
/// of the two sets. The result is stored into this bit set, which
/// grows as necessary.
/// </summary>
/// <param name="bs">the second bit set</param>
public void or(BitSet bs)
{
ensure(bs.bits.Length - 1);
for (var i = bs.bits.Length - 1; i >= 0; i--)
bits[i] |= bs.bits[i];
}
/// <summary>
/// Make sure the vector is big enough.
/// </summary>
/// <param name="lastElt">the size needed for the bits array</param>
private void ensure(int lastElt)
{
if (lastElt >= bits.Length)
{
var nd = new long[lastElt + 1];
Array.Copy(bits, 0, nd, 0, bits.Length);
bits = nd;
}
}
// This is used by EnumSet for efficiency.
public bool containsAll(BitSet other)
{
for (int i = other.bits.Length - 1; i >= 0; i--)
{
if ((bits[i] & other.bits[i]) != other.bits[i])
return false;
}
return true;
}
/// <summary>
/// Returns a hash code value for this bit set. The hash code of
/// two bit sets containing the same integers is identical. The algorithm
/// used to compute it is as follows:
///
/// Suppose the bits in the BitSet were to be stored in an array of
/// long integers called <code>bits</code>, in such a manner that
/// bit <code>k</code> is set in the BitSet (for non-negative values
/// of <code>k</code>) if and only if
///
/// <code>((k/64) < bits.length)
/// && ((bits[k/64] & (1L << (bit % 64))) != 0)
/// </code>
///
/// Then the following definition of the GetHashCode method
/// would be a correct implementation of the actual algorithm:
///
/// <pre>public override int GetHashCode()
/// {
/// long h = 1234;
/// for (int i = bits.length-1; i >= 0; i--)
/// {
/// h ^= bits[i] * (i + 1);
/// }
///
/// return (int)((h >> 32) ^ h);
/// }</pre>
///
/// Note that the hash code values changes, if the set is changed.
/// </summary>
/// <returns>the hash code value for this bit set.</returns>
public override int GetHashCode()
{
long h = 1234;
for (int i = bits.Length; i > 0;)
h ^= i * bits[--i];
return (int)((h >> 32) ^ h);
}
/// <summary>
/// Returns true if the <code>obj</code> is a bit set that contains
/// exactly the same elements as this bit set, otherwise false.
/// </summary>
/// <param name="obj">the object to compare to</param>
/// <returns>true if obj equals this bit set</returns>
public override bool Equals(object obj)
{
if (!(obj.GetType() == typeof(BitSet)))
return false;
var bs = (BitSet)obj;
var max = Math.Min(bits.Length, bs.bits.Length);
int i;
for (i = 0; i < max; ++i)
if (bits[i] != bs.bits[i])
return false;
// If one is larger, check to make sure all extra bits are 0.
for (int j = i; j < bits.Length; ++j)
if (bits[j] != 0)
return false;
for (int j = i; j < bs.bits.Length; ++j)
if (bs.bits[j] != 0)
return false;
return true;
}
/// <summary>
/// Returns the string representation of this bit set. This
/// consists of a comma separated list of the integers in this set
/// surrounded by curly braces. There is a space after each comma.
/// A sample string is thus "{1, 3, 53}".
/// </summary>
/// <returns>the string representation.</returns>
public override string ToString()
{
var r = new StringBuilder("{");
var first = true;
for (var i = 0; i < bits.Length; ++i)
{
var bit = 1;
var word = bits[i];
if (word == 0)
continue;
for (var j = 0; j < 64; ++j)
{
if ((word & bit) != 0)
{
if (!first)
r.Append(", ");
r.Append(64 * i + j);
first = false;
}
bit <<= 1;
}
}
return r.Append("}").ToString();
}
}
}