-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclassification.py
executable file
·183 lines (133 loc) · 5.97 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import numpy as np
import argparse
import torch
import torch.optim as optim
from tqdm import *
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision
import matplotlib.pyplot as plt
from option import Options
from datasets import softRandom
from torch.optim import lr_scheduler
import copy
import time
rootdir = os.getcwd()
args = Options().parse()
image_datasets = {x: softRandom.miniImagenetEmbeddingDataset(type=x)
for x in ['train', 'val','test']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=args.batchSize,
shuffle=True, num_workers=args.nthreads)
for x in ['train', 'val','test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val','test']}
######################################################################
# Define the Embedding Network
class ClassificationNetwork(nn.Module):
def __init__(self):
super(ClassificationNetwork, self).__init__()
self.convnet = torchvision.models.resnet18(pretrained=False)
num_ftrs = self.convnet.fc.in_features
self.convnet.fc = nn.Linear(num_ftrs,64)
def forward(self,inputs):
outputs = self.convnet(inputs)
return outputs
classificationNetwork = ClassificationNetwork()
if args.network!='None':
classificationNetwork.load_state_dict(torch.load('models/'+str(args.network)+'.t7', map_location=lambda storage, loc: storage))
print('loading ',str(args.network))
classificationNetwork = classificationNetwork.cuda()
my_list = ['convnet.fc.weight', 'convnet.fc.bias']
params = list(filter(lambda kv: kv[0] in my_list, classificationNetwork.named_parameters()))
base_params = list(filter(lambda kv: kv[0] not in my_list, classificationNetwork.named_parameters()))##
# print(params,base_params)
#############################################
#Define the optimizer#
criterion = nn.CrossEntropyLoss()
if args.network=='None':
optimizer_embedding = optim.Adam([
{'params': classificationNetwork.parameters()},
], lr=0.001)
else:
optimizer_embedding = optim.Adam([
{'params': params,'lr': args.LR*0.1},
{'params': base_params, 'lr': args.LR}##
])
embedding_lr_scheduler = lr_scheduler.StepLR(optimizer_embedding, step_size=10, gamma=0.5)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 1000000000.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in [ 'train']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
tot_dist = 0.0
running_corrects = 0
loss = 0
# Iterate over data.
for i,(inputs,labels) in tqdm(enumerate(dataloaders[phase])):
#c = labels
# wrap them in Variable
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
labels = labels.view(labels.size(0))
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.view(-1)).item()
#print(running_corrects)
epoch_loss = running_loss / (dataset_sizes[phase]*1.0)
epoch_acc = running_corrects / (dataset_sizes[phase]*1.0)
info = {
phase+'loss': running_loss,
phase+'Accuracy': epoch_acc,
}
print('{} Loss: {:.4f} Accuracy: {:.4f} '.format(
phase, epoch_loss,epoch_acc))
# deep copy the model
if phase == 'train' and epoch_loss < best_loss:
best_loss = epoch_loss
best_model_wts = copy.deepcopy(model.state_dict())
print()
# if epoch>=30 and epoch %3 ==0:
# torch.save(best_model_wts,os.path.join(rootdir,'models/'+str(args.tensorname)+ str(epoch) + '.t7'))
# print('save!')
if epoch % 10 ==0:
torch.save(best_model_wts,os.path.join(rootdir,'models/'+str(args.tensorname)+ '.t7'))
print('save!')
##
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Loss: {:4f}'.format(best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
return model
classificationNetwork = train_model(classificationNetwork, criterion, optimizer_embedding,
embedding_lr_scheduler, num_epochs=35)##
torch.save(classificationNetwork.state_dict(),os.path.join(rootdir,'models/'+str(args.tensorname)+'.t7'))