-
Notifications
You must be signed in to change notification settings - Fork 70
/
hand_evaluator.py
369 lines (327 loc) · 17.3 KB
/
hand_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from lookup_tables import LookupTables
from popcount import PopCount
from itertools import combinations
from operator import mul, __or__, __and__, __xor__
class HandLengthException(Exception):
pass
class HandEvaluator:
class Two:
def evaluate_percentile(hand):
"""
Using lookup table, return percentile of your hand with two cards
"""
if len(hand) != 2:
raise HandLengthException("Only 2-card hands are supported by the Two evaluator")
if hand[0].suit == hand[1].suit:
if hand[0].rank < hand[1].rank:
return LookupTables.Two.suited_ranks_to_percentile[hand[0].rank][hand[1].rank]
else:
return LookupTables.Two.suited_ranks_to_percentile[hand[1].rank][hand[0].rank]
else:
return LookupTables.Two.unsuited_ranks_to_percentile[hand[0].rank][hand[1].rank]
evaluate_percentile = staticmethod(evaluate_percentile)
class Five:
def card_to_binary(card):
"""
Convert the lookup_tables.Card representation to a binary
representation for use in 5-card hand evaluation
"""
# This is Cactus Kev's algorithm, reimplemented in Python since we can't
# use C libraries
# First we need to generate the following representation
# Bits marked x are not used.
# xxxbbbbb bbbbbbbb cdhsrrrr xxpppppp
# b is one bit flipped for A-2
# c, d, h, s are flipped if you have a club, diamond, heart, spade
# r is just the numerical rank in binary, with deuce = 0
# p is the prime from LookupTable.primes corresponding to the rank,
# in binary
# Then shift appropriately to fit the template above
b_mask = 1 << (14 + card.rank)
cdhs_mask = 1 << (card.suit + 11)
r_mask = (card.rank - 2) << 8
p_mask = LookupTables.primes[card.rank - 2]
# OR them together to get the final result
return b_mask | r_mask | p_mask | cdhs_mask
def card_to_binary_lookup(card):
return LookupTables.Five.card_to_binary[card.rank][card.suit]
# TODO: Return a class of hand too? Would be useful to see if we can make
# a draw or something.
def evaluate_rank(hand):
"""
Return the rank of this 5-card hand amongst all 5-card hands.
"""
if len(hand) != 5:
raise HandLengthException("Only 5-card hands are supported by the Five evaluator")
# This implementation uses the binary representation from
# card_to_binary
card_to_binary = HandEvaluator.Five.card_to_binary_lookup
# bh stands for binary hand
bh = map(card_to_binary, hand)
has_flush = reduce(__and__, bh, 0xF000)
# This is a unique number based on the ranks if your cards,
# assuming your cards are all different
q = reduce(__or__, bh) >> 16
if has_flush:
# Look up the rank of this flush
return LookupTables.Five.flushes[q]
else:
# The q still works as a key if you have 5 unique cards,
# so see if we can look it up
possible_rank = LookupTables.Five.unique5[q]
if possible_rank != 0:
return possible_rank
else:
# We need a different lookup table with different keys
# Compute the unique product of primes, because we have a pair
# or trips, etc. Use the product to look up the rank.
q = reduce(mul, map(lambda card: card & 0xFF, bh))
# Here, use dict instead of sparse array (basically hashing)
# I didn't bother using "perfect hash", the python hashing
# shouldn't be terrible
return LookupTables.Five.pairs.get(q)
card_to_binary = staticmethod(card_to_binary)
card_to_binary_lookup = staticmethod(card_to_binary_lookup)
evaluate_rank = staticmethod(evaluate_rank)
class Six:
def card_to_binary(card):
"""
Convert the lookup_tables.Card representation to a binary
representation for use in 6-card hand evaluation
"""
# This a variant on Cactus Kev's algorithm. We need to replace
# the 4-bit representation of suit with a prime number representation
# so we can look up whether something is a flush by prime product
# First we need to generate the following representation
# Bits marked x are not used.
# xxxbbbbb bbbbbbbb qqqqrrrr xxpppppp
# b is one bit flipped for A-2
# q is 2, 3, 5, or 7 for spades, hearts, clubs, diamonds
# r is just the numerical rank in binary, with deuce = 0
# p is the prime from LookupTable.primes corresponding to the rank,
# in binary
# Then shift appropriately to fit the template above
b_mask = 1 << (14 + card.rank)
q_mask = LookupTables.primes[card.suit - 1] << 12
r_mask = (card.rank - 2) << 8
p_mask = LookupTables.primes[card.rank - 2]
# OR them together to get the final result
return b_mask | q_mask | r_mask | p_mask
def card_to_binary_lookup(card):
return LookupTables.Six.card_to_binary[card.rank][card.suit]
def evaluate_rank(hand):
"""
Return the rank amongst all possible 5-card hands of any kind
using the best 5-card hand from the given 6-card hand.
"""
if len(hand) != 6:
raise HandLengthException("Only 6-card hands are supported by the Six evaluator")
# bh stands for binary hand, map to that representation
card_to_binary = HandEvaluator.Six.card_to_binary_lookup
bh = map(card_to_binary, hand)
# We can determine if it's a flush using a lookup table.
# Basically use prime number trick but map to bool instead of rank
# Once you have a flush, there is no other higher hand you can make
# except straight flush, so just need to determine the highest flush
flush_prime = reduce(mul, map(lambda card: (card >> 12) & 0xF, bh))
flush_suit = False
if flush_prime in LookupTables.Six.prime_products_to_flush:
flush_suit = LookupTables.Six.prime_products_to_flush[flush_prime]
# Now use ranks to determine hand via lookup
odd_xor = reduce(__xor__, bh) >> 16
even_xor = (reduce(__or__, bh) >> 16) ^ odd_xor
# If you have a flush, use odd_xor to find the rank
# That value will have either 4 or 5 bits
if flush_suit:
if even_xor == 0:
# There might be 0 or 1 cards in the wrong suit, so filter
# TODO: There might be a faster way?
bits = reduce(__or__, map(
lambda card: (card >> 16),
filter(
lambda card: (card >> 12) & 0xF == flush_suit, bh)))
return LookupTables.Six.flush_rank_bits_to_rank[bits]
else:
# you have a pair, one card in the flush suit,
# so just use the ranks you have by or'ing the two
return LookupTables.Six.flush_rank_bits_to_rank[odd_xor | even_xor]
# Otherwise, get ready for a wild ride:
# Can determine this by using 2 XORs to reduce the size of the
# lookup. You have an even number of cards, so any odd_xor with
# an odd number of bits set is not possible.
# Possibilities are odd-even:
# 6-0 => High card or straight (1,1,1,1,1,1)
# Look up by odd_xor
# 4-1 => Pair (1,1,1,1,2)
# Look up by even_xor (which pair) then odd_xor (which set of kickers)
# 4-0 => Trips (1,1,1,3)
# Don't know which one is the triple, use prime product of ranks
# 2-2 => Two pair (1,1,2,2)
# Look up by odd_xor then even_xor (or vice-versa)
# 2-1 => Four of a kind (1,1,4) or full house (1,3,2)
# Look up by prime product
# 2-0 => Full house using 2 trips (3,3)
# Look up by odd_xor
# 0-3 => Three pairs (2,2,2)
# Look up by even_xor
# 0-2 => Four of a kind with pair (2,4)
# Look up by prime product
# Any time you can't disambiguate 2/4 or 1/3, use primes.
# We also assume you can count bits or determine a power of two.
# (see PopCount class.)
if even_xor == 0: # x-0
odd_popcount = PopCount.popcount(odd_xor)
if odd_popcount == 4: # 4-0
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Six.prime_products_to_rank[prime_product]
else: # 6-0, 2-0
return LookupTables.Six.odd_xors_to_rank[odd_xor]
elif odd_xor == 0: # 0-x
even_popcount = PopCount.popcount(even_xor)
if even_popcount == 2: # 0-2
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Six.prime_products_to_rank[prime_product]
else: # 0-3
return LookupTables.Six.even_xors_to_rank[even_xor]
else: # odd_popcount is 4 or 2
odd_popcount = PopCount.popcount(odd_xor)
if odd_popcount == 4: # 4-1
return LookupTables.Six.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
else: # 2-x
even_popcount = PopCount.popcount(even_xor)
if even_popcount == 2: # 2-2
return LookupTables.Six.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
else: # 2-1
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Six.prime_products_to_rank[prime_product]
card_to_binary = staticmethod(card_to_binary)
card_to_binary_lookup = staticmethod(card_to_binary_lookup)
evaluate_rank = staticmethod(evaluate_rank)
class Seven:
def card_to_binary(card):
"""
Convert the lookup_tables.Card representation to a binary
representation for use in 7-card hand evaluation
"""
# Same as for 6 cards
b_mask = 1 << (14 + card.rank)
q_mask = LookupTables.primes[card.suit - 1] << 12
r_mask = (card.rank - 2) << 8
p_mask = LookupTables.primes[card.rank - 2]
return b_mask | q_mask | r_mask | p_mask
def card_to_binary_lookup(card):
return LookupTables.Seven.card_to_binary[card.rank][card.suit]
def evaluate_rank(hand):
"""
Return the rank amongst all possible 5-card hands of any kind
using the best 5-card hand from the given 6-card hand.
"""
if len(hand) != 7:
raise HandLengthException("Only 7-card hands are supported by the Seven evaluator")
# bh stands for binary hand, map to that representation
card_to_binary = HandEvaluator.Seven.card_to_binary_lookup
bh = map(card_to_binary, hand)
# Use a lookup table to determine if it's a flush as with 6 cards
flush_prime = reduce(mul, map(lambda card: (card >> 12) & 0xF, bh))
flush_suit = False
if flush_prime in LookupTables.Seven.prime_products_to_flush:
flush_suit = LookupTables.Seven.prime_products_to_flush[flush_prime]
# Now use ranks to determine hand via lookup
odd_xor = reduce(__xor__, bh) >> 16
even_xor = (reduce(__or__, bh) >> 16) ^ odd_xor
if flush_suit:
# There will be 0-2 cards not in the right suit
even_popcount = PopCount.popcount(even_xor)
if even_xor == 0:
# TODO: There might be a faster way?
bits = reduce(__or__, map(
lambda card: (card >> 16),
filter(
lambda card: (card >> 12) & 0xF == flush_suit, bh)))
return LookupTables.Seven.flush_rank_bits_to_rank[bits]
else:
if even_popcount == 2:
return LookupTables.Seven.flush_rank_bits_to_rank[odd_xor | even_xor]
else:
bits = reduce(__or__, map(
lambda card: (card >> 16),
filter(
lambda card: (card >> 12) & 0xF == flush_suit, bh)))
return LookupTables.Seven.flush_rank_bits_to_rank[bits]
# Odd-even XOR again, see Six.evaluate_rank for details
# 7 is odd, so you have to have an odd number of bits in odd_xor
# 7-0 => (1,1,1,1,1,1,1) - High card
# 5-1 => (1,1,1,1,1,2) - Pair
# 5-0 => (1,1,1,1,3) - Trips
# 3-2 => (1,1,1,2,2) - Two pair
# 3-1 => (1,1,1,4) or (1,1,3,2) - Quads or full house
# 3-0 => (1,3,3) - Full house
# 1-3 => (1,2,2,2) - Two pair
# 1-2 => (1,2,4) or (3,2,2) - Quads or full house
# 1-1 => (3,4) - Quads
if even_xor == 0: # x-0
odd_popcount = PopCount.popcount(odd_xor)
if odd_popcount == 7: # 7-0
return LookupTables.Seven.odd_xors_to_rank[odd_xor]
else: # 5-0, 3-0
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Seven.prime_products_to_rank[prime_product]
else:
odd_popcount = PopCount.popcount(odd_xor)
if odd_popcount == 5: # 5-1
return LookupTables.Seven.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
elif odd_popcount == 3:
even_popcount = PopCount.popcount(even_xor)
if even_popcount == 2: # 3-2
return LookupTables.Seven.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
else: # 3-1
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Seven.prime_products_to_rank[prime_product]
else:
even_popcount = PopCount.popcount(even_xor)
if even_popcount == 3: # 1-3
return LookupTables.Seven.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
elif even_popcount == 2: # 1-2
prime_product = reduce(mul, map(lambda card: card & 0xFF, bh))
return LookupTables.Seven.prime_products_to_rank[prime_product]
else: # 1-1
return LookupTables.Seven.even_xors_to_odd_xors_to_rank[even_xor][odd_xor]
card_to_binary = staticmethod(card_to_binary)
card_to_binary_lookup = staticmethod(card_to_binary_lookup)
evaluate_rank = staticmethod(evaluate_rank)
# These are the main functions
def evaluate_hand(hand, board=[]):
"""
Return the percentile of the best 5 card hand made from these
cards, against an equivalent number of cards.
"""
hand_lengths = [2]
if len(hand) not in hand_lengths:
raise HandLengthException("Only %s hole cards are supported" % ", ".join(map(str, hand_lengths)))
cards = list(hand) + list(board)
if len(cards) == 2:
return HandEvaluator.Two.evaluate_percentile(hand)
elif len(cards) == 5:
evaluator = HandEvaluator.Five
elif len(cards) == 6:
evaluator = HandEvaluator.Six
elif len(cards) == 7:
evaluator = HandEvaluator.Seven
else:
# wrong number of cards
raise HandLengthException("Only 2, 5, 6, 7 cards total are supported by evaluate_hand")
# Default values in case we screw up
rank = 7463
percentile = 0.0
rank = evaluator.evaluate_rank(cards)
possible_opponent_hands = list(combinations(LookupTables.deck - set(cards), len(hand)))
hands_beaten = 0
for h in possible_opponent_hands:
possible_opponent_rank = evaluator.evaluate_rank(list(h) + board)
if rank < possible_opponent_rank:
# you beat this hand
hands_beaten += 1
elif rank == possible_opponent_rank:
hands_beaten += 0.5
return float(hands_beaten) / len(list(possible_opponent_hands))
evaluate_hand = staticmethod(evaluate_hand)