-
Notifications
You must be signed in to change notification settings - Fork 70
/
pokerstrategy.py
341 lines (316 loc) · 15.9 KB
/
pokerstrategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from pokertrees import *
import random
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in xrange(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return 0
class Strategy(object):
def __init__(self, player, filename=None):
self.player = player
self.policy = {}
if filename is not None:
self.load_from_file(filename)
def build_default(self, gametree):
for key in gametree.information_sets:
infoset = gametree.information_sets[key]
test_node = infoset[0]
if test_node.player == self.player:
for node in infoset:
prob = 1.0 / float(len(node.children))
probs = [0,0,0]
for action in range(3):
if node.valid(action):
probs[action] = prob
if type(node.player_view) is tuple:
for pview in node.player_view:
self.policy[pview] = [x for x in probs]
else:
self.policy[node.player_view] = probs
def build_random(self, gametree):
for key in gametree.information_sets:
infoset = gametree.information_sets[key]
test_node = infoset[0]
if test_node.player == self.player:
for node in infoset:
probs = [0 for _ in range(3)]
total = 0
for action in range(3):
if node.valid(action):
probs[action] = random.random()
total += probs[action]
probs = [x / total for x in probs]
if type(node.player_view) is tuple:
for pview in node.player_view:
self.policy[pview] = [x for x in probs]
else:
self.policy[node.player_view] = probs
def probs(self, infoset):
assert(infoset in self.policy)
return self.policy[infoset]
def sample_action(self, infoset):
assert(infoset in self.policy)
probs = self.policy[infoset]
val = random.random()
total = 0
for i,p in enumerate(probs):
total += p
if p > 0 and val <= total:
return i
raise Exception('Invalid probability distribution. Infoset: {0} Probs: {1}'.format(infoset, probs))
def load_from_file(self, filename):
self.policy = {}
f = open(filename, 'r')
for line in f:
line = line.strip()
if line == "" or line.startswith('#'):
continue
tokens = line.split(' ')
assert(len(tokens) == 4)
key = tokens[0]
probs = [float(x) for x in reversed(tokens[1:])]
self.policy[key] = probs
def save_to_file(self, filename):
f = open(filename, 'w')
for key in sorted(self.policy.keys()):
val = self.policy[key]
f.write("{0} {1:.9f} {2:.9f} {3:.9f}\n".format(key, val[2], val[1], val[0]))
f.flush()
f.close()
class StrategyProfile(object):
def __init__(self, rules, strategies):
assert(rules.players == len(strategies))
self.rules = rules
self.strategies = strategies
self.gametree = None
self.publictree = None
def expected_value(self):
"""
Calculates the expected value of each strategy in the profile.
Returns an array of scalars corresponding to the expected payoffs.
"""
if self.gametree is None:
self.gametree = PublicTree(self.rules)
if self.gametree.root is None:
self.gametree.build()
expected_values = self.ev_helper(self.gametree.root, [{(): 1} for _ in range(self.rules.players)])
for ev in expected_values:
assert(len(ev) == 1)
return tuple(next(ev.itervalues()) for ev in expected_values) # pull the EV from the dict returned
def old_ev_helper(self, root, pathprobs):
if type(root) is TerminalNode:
return self.ev_terminal_node(root, reachprobs)
if type(root) is HolecardChanceNode or type(root) is BoardcardChanceNode:
payoffs = [0] * self.rules.players
prob = pathprob / float(len(root.children))
for child in root.children:
subpayoffs = self.ev_helper(child, prob)
for i,p in enumerate(subpayoffs):
payoffs[i] += p
return payoffs
# Otherwise, it's an ActionNode
probs = self.strategies[root.player].probs(root.player_view)
payoffs = [0] * self.rules.players
if root.fold_action and probs[FOLD] > 0.0000000001:
subpayoffs = self.ev_helper(root.fold_action, pathprob * probs[FOLD])
for i,p in enumerate(subpayoffs):
payoffs[i] += p
if root.call_action and probs[CALL] > 0.0000000001:
subpayoffs = self.ev_helper(root.call_action, pathprob * probs[CALL])
for i,p in enumerate(subpayoffs):
payoffs[i] += p
if root.raise_action and probs[RAISE] > 0.0000000001:
subpayoffs = self.ev_helper(root.raise_action, pathprob * probs[RAISE])
for i,p in enumerate(subpayoffs):
payoffs[i] += p
return payoffs
def ev_helper(self, root, reachprobs):
if type(root) is TerminalNode:
return self.ev_terminal_node(root, reachprobs)
if type(root) is HolecardChanceNode:
return self.ev_holecard_node(root, reachprobs)
if type(root) is BoardcardChanceNode:
return self.ev_boardcard_node(root, reachprobs)
return self.ev_action_node(root, reachprobs)
def ev_terminal_node(self, root, reachprobs):
payoffs = [None for _ in range(self.rules.players)]
for player in range(self.rules.players):
player_payoffs = {hc: 0 for hc in root.holecards[player]}
counts = {hc: 0 for hc in root.holecards[player]}
for hands,winnings in root.payoffs.items():
prob = 1.0
player_hc = None
for opp,hc in enumerate(hands):
if opp == player:
player_hc = hc
else:
prob *= reachprobs[opp][hc]
player_payoffs[player_hc] += prob * winnings[player]
counts[player_hc] += 1
for hc,count in counts.items():
if count > 0:
player_payoffs[hc] /= float(count)
payoffs[player] = player_payoffs
return payoffs
def ev_holecard_node(self, root, reachprobs):
assert(len(root.children) == 1)
prevlen = len(reachprobs[0].keys()[0])
possible_deals = float(choose(len(root.deck) - prevlen,root.todeal))
next_reachprobs = [{ hc: reachprobs[player][hc[0:prevlen]] / possible_deals for hc in root.children[0].holecards[player] } for player in range(self.rules.players)]
subpayoffs = self.ev_helper(root.children[0], next_reachprobs)
payoffs = [{ hc: 0 for hc in root.holecards[player] } for player in range(self.rules.players)]
for player, subpayoff in enumerate(subpayoffs):
for hand,winnings in subpayoff.items():
hc = hand[0:prevlen]
payoffs[player][hc] += winnings
return payoffs
def ev_boardcard_node(self, root, reachprobs):
prevlen = len(reachprobs[0].keys()[0])
possible_deals = float(choose(len(root.deck) - prevlen,root.todeal))
payoffs = [{ hc: 0 for hc in root.holecards[player] } for player in range(self.rules.players)]
for bc in root.children:
next_reachprobs = [{ hc: reachprobs[player][hc] / possible_deals for hc in bc.holecards[player] } for player in range(self.rules.players)]
subpayoffs = self.ev_helper(bc, next_reachprobs)
for player,subpayoff in enumerate(subpayoffs):
for hand,winnings in subpayoff.items():
payoffs[player][hand] += winnings
return payoffs
def ev_action_node(self, root, reachprobs):
strategy = self.strategies[root.player]
next_reachprobs = deepcopy(reachprobs)
action_probs = { hc: strategy.probs(self.rules.infoset_format(root.player, hc, root.board, root.bet_history)) for hc in root.holecards[root.player] }
action_payoffs = [None, None, None]
if root.fold_action:
next_reachprobs[root.player] = { hc: action_probs[hc][FOLD] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[FOLD] = self.ev_helper(root.fold_action, next_reachprobs)
if root.call_action:
next_reachprobs[root.player] = { hc: action_probs[hc][CALL] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[CALL] = self.ev_helper(root.call_action, next_reachprobs)
if root.raise_action:
next_reachprobs[root.player] = { hc: action_probs[hc][RAISE] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[RAISE] = self.ev_helper(root.raise_action, next_reachprobs)
payoffs = []
for player in range(self.rules.players):
player_payoffs = { hc: 0 for hc in root.holecards[player] }
for action,subpayoff in enumerate(action_payoffs):
if subpayoff is None:
continue
if root.player == player:
for hc,winnings in subpayoff[player].iteritems():
player_payoffs[hc] += winnings * action_probs[hc][action]
else:
for hc,winnings in subpayoff[player].iteritems():
player_payoffs[hc] += winnings
payoffs.append(player_payoffs)
return payoffs
def best_response(self):
"""
Calculates the best response for each player in the strategy profile.
Returns a list of tuples of the best response strategy and its expected value for each player.
"""
if self.publictree is None:
self.publictree = PublicTree(self.rules)
if self.publictree.root is None:
self.publictree.build()
responses = [Strategy(player) for player in range(self.rules.players)]
expected_values = self.br_helper(self.publictree.root, [{(): 1} for _ in range(self.rules.players)], responses)
for ev in expected_values:
assert(len(ev) == 1)
expected_values = tuple(next(ev.itervalues()) for ev in expected_values) # pull the EV from the dict returned
return (StrategyProfile(self.rules, responses), expected_values)
def br_helper(self, root, reachprobs, responses):
if type(root) is TerminalNode:
return self.ev_terminal_node(root, reachprobs)
if type(root) is HolecardChanceNode:
return self.br_holecard_node(root, reachprobs, responses)
if type(root) is BoardcardChanceNode:
return self.br_boardcard_node(root, reachprobs, responses)
return self.br_action_node(root, reachprobs, responses)
def br_holecard_node(self, root, reachprobs, responses):
assert(len(root.children) == 1)
prevlen = len(reachprobs[0].keys()[0])
possible_deals = float(choose(len(root.deck) - prevlen,root.todeal))
next_reachprobs = [{ hc: reachprobs[player][hc[0:prevlen]] / possible_deals for hc in root.children[0].holecards[player] } for player in range(self.rules.players)]
subpayoffs = self.br_helper(root.children[0], next_reachprobs, responses)
payoffs = [{ hc: 0 for hc in root.holecards[player] } for player in range(self.rules.players)]
for player, subpayoff in enumerate(subpayoffs):
for hand,winnings in subpayoff.items():
hc = hand[0:prevlen]
payoffs[player][hc] += winnings
return payoffs
def br_boardcard_node(self, root, reachprobs, responses):
prevlen = len(reachprobs[0].keys()[0])
possible_deals = float(choose(len(root.deck) - prevlen,root.todeal))
payoffs = [{ hc: 0 for hc in root.holecards[player] } for player in range(self.rules.players)]
for bc in root.children:
next_reachprobs = [{ hc: reachprobs[player][hc] / possible_deals for hc in bc.holecards[player] } for player in range(self.rules.players)]
subpayoffs = self.br_helper(bc, next_reachprobs, responses)
for player,subpayoff in enumerate(subpayoffs):
for hand,winnings in subpayoff.items():
payoffs[player][hand] += winnings
return payoffs
def br_action_node(self, root, reachprobs, responses):
strategy = self.strategies[root.player]
next_reachprobs = deepcopy(reachprobs)
action_probs = { hc: strategy.probs(self.rules.infoset_format(root.player, hc, root.board, root.bet_history)) for hc in root.holecards[root.player] }
action_payoffs = [None, None, None]
if root.fold_action:
next_reachprobs[root.player] = { hc: action_probs[hc][FOLD] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[FOLD] = self.br_helper(root.fold_action, next_reachprobs, responses)
if root.call_action:
next_reachprobs[root.player] = { hc: action_probs[hc][CALL] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[CALL] = self.br_helper(root.call_action, next_reachprobs, responses)
if root.raise_action:
next_reachprobs[root.player] = { hc: action_probs[hc][RAISE] * reachprobs[root.player][hc] for hc in root.holecards[root.player] }
action_payoffs[RAISE] = self.br_helper(root.raise_action, next_reachprobs, responses)
payoffs = []
for player in range(self.rules.players):
if player is root.player:
payoffs.append(self.br_response_action(root, responses, action_payoffs))
else:
player_payoffs = { hc: 0 for hc in root.holecards[player] }
for subpayoff in action_payoffs:
if subpayoff is None:
continue
for hc,winnings in subpayoff[player].iteritems():
player_payoffs[hc] += winnings
payoffs.append(player_payoffs)
return payoffs
def br_response_action(self, root, responses, action_payoffs):
player_payoffs = { }
max_strategy = responses[root.player]
for hc in root.holecards[root.player]:
max_action = None
if action_payoffs[FOLD]:
max_action = [FOLD]
max_value = action_payoffs[FOLD][root.player][hc]
if action_payoffs[CALL]:
value = action_payoffs[CALL][root.player][hc]
if max_action is None or value > max_value:
max_action = [CALL]
max_value = value
elif max_value == value:
max_action.append(CALL)
if action_payoffs[RAISE]:
value = action_payoffs[RAISE][root.player][hc]
if max_action is None or value > max_value:
max_action = [RAISE]
max_value = value
elif max_value == value:
max_action.append(RAISE)
probs = [0,0,0]
for action in max_action:
probs[action] = 1.0 / float(len(max_action))
infoset = self.rules.infoset_format(root.player, hc, root.board, root.bet_history)
max_strategy.policy[infoset] = probs
player_payoffs[hc] = max_value
return player_payoffs