-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_laprepr_env.py
109 lines (87 loc) · 2.95 KB
/
test_laprepr_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import yaml
from argparse import ArgumentParser
import random
import numpy as np
import jax
import jax.numpy as jnp
import optax
import gymnasium as gym
from gymnasium.wrappers import TimeLimit
import src.env
from src.env.wrapper.norm_obs import NormObs
from src.tools import timer_tools
from src.tools import saving
# from src.trainer import (
# ScalarBarrierDualLaplacianEncoderTrainer,
# )
from src.agent.episodic_replay_buffer import EpisodicReplayBuffer
from src.nets import (
MLP, generate_hk_module_fn,
)
import wandb
os.environ['WANDB_API_KEY']='83c25550226f8a86fdd4874026d2c0804cd3dc05'
os.environ['WANDB_ENTITY']='tarod13'
# os.environ['WANDB_MODE']='offline'
def create_env(
model_fn,
model_params,
reward_weights,
env_name,
env_family,
seed,
max_episode_steps
):
# Create environment
path_txt_grid = f'./src/env/grid/txts/{env_name}.txt'
env = gym.make(
model_fn,
model_params,
reward_weights,
env_family,
full_representation = True,
termination_reward: float = 0.0,
path=path_txt_grid,
render_mode="rgb_array",
use_target=False,
eig=None,
)
# Wrap environment with observation normalization
obs_wrapper = lambda e: NormObs(e)
env = obs_wrapper(env)
# Wrap environment with time limit
time_wrapper = lambda e: TimeLimit(e, max_episode_steps=max_episode_steps)
env = time_wrapper(env)
# Set seed
env.reset(seed=seed)
return env
def main(hyperparams):
# Load YAML hyperparameters
with open(f'./src/hyperparam/{hyperparams.config_file}', 'r') as f:
hparam_yaml = yaml.safe_load(f) # TODO: Check necessity of hyperparams
# Replace hparams with command line arguments
for k, v in vars(hyperparams).items():
if v is not None:
hparam_yaml[k] = v
# Set random seed
np.random.seed(hparam_yaml['seed']) # TODO: Check if this is the best way to set the seed
random.seed(hparam_yaml['seed'])
# Initialize timer
timer = timer_tools.Timer()
# Create trainer
d = hparam_yaml['d']
rng_key = jax.random.PRNGKey(hparam_yaml['seed'])
hidden_dims = hparam_yaml['hidden_dims']
env_name = hparam_yaml['env_name']
date_time = hparam_yaml['date_time']
laprep_fn = generate_hk_module_fn(MLP, d, hidden_dims, hparam_yaml['activation'])
load_path_last = f'./results/models/{env_name}/last_{date_time}.pkl'
laprep_params = saving.load_model(path=load_path_last)[0]
# Create environment
env = create_env(env_name, 'LapGrid-v0', hparam_yaml['seed'], hparam_yaml['max_episode_steps'])
# Print training time
print('Total time cost: {:.4g}s.'.format(timer.time_cost()))
if __name__ == '__main__':
parser = ArgumentParser()
hyperparams = parser.parse_args()
main(hyperparams)