forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
operator_schema.h
612 lines (520 loc) · 18.1 KB
/
operator_schema.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#ifndef CAFFE2_CORE_OPERATOR_SCHEMA_H_
#define CAFFE2_CORE_OPERATOR_SCHEMA_H_
#include <climits>
#include <functional>
#include <initializer_list>
#include <ostream>
#include <set>
#include <unordered_map>
#include <vector>
#include <c10/util/irange.h>
#include <c10/util/Registry.h>
#include <caffe2/core/common.h>
#include <caffe2/core/logging.h>
#include <caffe2/core/types.h>
#include <caffe2/proto/caffe2_pb.h>
#include <caffe2/utils/filler.h>
#include <caffe2/utils/proto_utils.h>
namespace caffe2 {
// A const value returned by OpSchema::CalculateOutput() if the number of
// output cannot be determined.
constexpr int kCannotComputeNumOutputs = -1;
/**
* @brief A class to record the schema of an op.
*
* OpSchema records the common interface of an op specified by its name. This
* is optional for each operator implemented in Caffe2 but is strongly
* recommended.
*
* To register an OpSchema, one can use the macro OPERATOR_SCHEMA(name) and
* then append the various functions in the class. For example, for an op
* that takes in two inputs, one output, and the first input and output
* could be in-place, can be written as
*
* OPERATOR_SCHEMA(name)
* .NumInputs(2).NumOutputs(1).AllowInplace({{0, 0}});
*/
class TORCH_API OpSchema {
public:
OpSchema() : OpSchema("unknown", "unknown", 0) {}
OpSchema(const string& type, const string& file, const int line);
/**
* @brief Returns the file that the op schema is registered from.
*/
inline const string& file() const {
return file_;
}
/**
* @brief Returns the line in file that the op schema is registered from.
*/
inline int line() const {
return line_;
}
/**
* @brief Returns the docstring of the op schema.
*/
inline const char* doc() const {
return doc_.empty() ? nullptr : doc_.c_str();
}
/**
* @brief Verifies if an operator definition protobuf matches the pattern
* specified in the schema.
*/
bool Verify(const OperatorDef& def) const;
// Functions to set the property of the operator schemas.
// Sets the number of inputs, either a fixed number or a min and a max.
/**
* @brief A single input.
*/
OpSchema& NumInputs(int n);
/**
* @brief Input could be in range [min, max], inclusive.
*/
OpSchema& NumInputs(int min, int max);
/**
* @brief Input could be one of the values specified in allowed_input_nums.
*/
OpSchema& NumInputs(set<int> allowed_input_nums);
/**
* @brief Input is checked with a specified function.
*/
OpSchema& NumInputs(std::function<bool(int)> func);
// Sets the number of outputs, either a fixed number, a min and a max,
// or a function that takes in the input number and produces an output
// number. Use only one function in the set below.
/**
* @brief A single output.
*/
OpSchema& NumOutputs(int n);
/**
* @brief Output could be in range [min, max], inclusive.
*/
OpSchema& NumOutputs(int min, int max);
/**
* @brief Output could be one of the values specified in allowed_output_nums.
*/
OpSchema& NumOutputs(set<int> allowed_output_nums);
/**
* @brief Output is checked with a specified function.
*/
OpSchema& NumOutputs(std::function<bool(int)> func);
/**
* @brief Relationship between inputs and outputs is checked with a specified
* function.
*/
OpSchema& NumInputsOutputs(std::function<bool(int, int)> func);
// Set the function that can calculate the number of output based on the
// number of input. Use only one function in the set below.
/**
* @brief Set the output calculator to a user-defined function.
*/
OpSchema& OutputCalculator(std::function<int(int)> calc);
/**
* @brief Set the number of outputs to be the same as the number of inputs.
*/
OpSchema& SameNumberOfOutput();
// Sets the rule to allow optional in-place operation.
OpSchema& AllowInplace(std::function<bool(int, int)> inplace);
OpSchema& AllowInplace(set<std::pair<int, int>> inplace);
OpSchema& AllowOneToOneInplace();
// Sets the rule to enforce in-place operation.
OpSchema& EnforceInplace(std::function<bool(int, int)> inplace);
OpSchema& EnforceInplace(set<std::pair<int, int>> inplace);
OpSchema& EnforceOneToOneInplace();
// Functions to deal with type and shape inference. Basically, this registers
// a function that takes in an OperatorDef and a series of input type and
// shape specified by TensorProto objects (whose data fields are empty), and
// produces a series of output type and shape.
typedef std::function<
vector<TensorShape>(const OperatorDef&, const vector<TensorShape>&)>
TensorInferenceFunctionType;
/**
* @brief Sets the tensor inference function, which is a std::function object
* defined in operator_schema.h.
*/
OpSchema& TensorInferenceFunction(TensorInferenceFunctionType function);
/**
* A wrapper that makes an infer tensor function to return unknown
* shape for all outputs if any one of the inputs has unknown shape
*/
static TensorInferenceFunctionType NeedsAllInputShapes(
TensorInferenceFunctionType f);
/**
* @brief Sets the corresponding onnx schema name
*/
OpSchema& InheritOnnxSchema(const std::string& onnx_schema_name);
/**
* @brief Shortcut to InheritOnnxSchema(type_)
*/
OpSchema& InheritOnnxSchema() {
return InheritOnnxSchema(type_);
}
/**
* @brief Sets the tensor inference function to produce the same output as
* the input.
*/
OpSchema& IdenticalTypeAndShape();
OpSchema& IdenticalTypeAndShapeOfInput(int idx);
OpSchema& IdenticalTypeAndShapeOfInputDim(int idx, int dim);
OpSchema& IdenticalTypeAndShapeOfMultipleInputs(const vector<int>& indices);
OpSchema& ScalarType(::caffe2::TensorProto_DataType dt);
/**
* @brief A function to allow one to infer the type and shape from the op
* schema.
*/
inline vector<TensorShape> InferTensor(
const OperatorDef& def,
const vector<TensorShape>& input_type_shape) const {
CAFFE_ENFORCE(
Verify(def),
"(InferTensor) Operator def did not pass schema checking: ",
ProtoDebugString(def));
return tensor_inference_function_(def, input_type_shape);
}
/*
* @brief A struct to store various cost information about
* an operator such as FLOPs, total memory use and parameters.
*/
struct Cost {
uint64_t flops{0}; // Floating point operations.
uint64_t bytes_read{0}; // Total memory read.
uint64_t bytes_written{0}; // Total memory written.
uint64_t params_bytes{0}; // Memory read for parameters.
};
/**
* @brief Registers a function that takes in an OperatorDef
* and a series of input shapes and returns the total "cost"
* required to run the operator via struct by value.
*/
typedef std::function<
struct Cost(const OperatorDef&, const vector<TensorShape>&)>
CostInferenceFunctionType;
/**
* @brief Register the Cost inference function.
*/
OpSchema& CostInferenceFunction(CostInferenceFunctionType function);
#if 0 // def _MSC_VER
/**
* @brief Register the Cost inference function via a pointer.
*/
template <typename T,
typename = std::enable_if<
std::is_same<CostInferenceFunctionType&&, T>:value
>:type>
inline OpSchema& CostInferenceFunction(T func) {
// Note: This is here in order to resolve an MSVC compiler issue: it
// does not automatically convert a function pointer to a std::function,
// and needs an explicit conversion.
return CostInferenceFunction(CostInferenceFunctionType(func));
}
#endif // _MSC_VER
bool HasCostInferenceFunction() const {
return !!cost_inference_function_;
}
inline struct Cost InferCost(
const OperatorDef& def,
const vector<TensorShape>& input_tensor_shape) const {
CAFFE_ENFORCE(
cost_inference_function_, "Cost inference function not defined.");
return (*cost_inference_function_)(def, input_tensor_shape);
}
// Functions to do documentation for the operator schema.
OpSchema& SetDoc(const string& doc);
struct Argument {
Argument(const char* name, const char* description, bool required)
: name_{name}, description_{description}, required_{required} {}
const char* name() const {
return name_;
}
const char* description() const {
return description_;
}
bool is_required() const {
return required_;
}
private:
const char* name_;
const char* description_;
const bool required_;
};
OpSchema&
Arg(const char* name, const char* description, bool required = false);
#define DECLARE_STANDARD_ARG(name, str) \
static const char* Arg_##name; \
OpSchema& Arg##name(const char* description);
DECLARE_STANDARD_ARG(IsTest, is_test)
#undef DECLARE_STANDARD_ARG
OpSchema& Input(const int n, const char* name, const char* description);
OpSchema& Output(const int n, const char* name, const char* description);
// Calls the passed function with `this` as an argument. Useful for
// adding docs for templated/macro ops.
OpSchema& FillUsing(std::function<void(OpSchema&)> populator);
// Remove from documentation
OpSchema& Private();
// This op can pass data across devices
OpSchema& InputsCanCrossDevices();
/**
* @brief A function to allow one to get the number of outputs based on the
* number of inputs, if this schema supports it.
*/
int CalculateOutput(int num_input) const;
const std::string& onnx_schema() const {
return onnx_schema_;
}
int min_input() const {
return min_input_;
}
int max_input() const {
return max_input_;
}
int min_output() const {
return min_output_;
}
int max_output() const {
return max_output_;
}
bool num_inputs_allowed(int x) const {
return num_inputs_allowed_(x);
}
bool num_outputs_allowed(int x) const {
return num_outputs_allowed_(x);
}
bool num_inputs_outputs_allowed(int x, int y) const {
return num_inputs_outputs_allowed_(x, y);
}
int inf() const {
return std::numeric_limits<int>::max();
}
bool inplace_enforced(int x, int y) const {
return inplace_enforced_(x, y);
}
TORCH_API friend std::ostream& operator<<(
std::ostream& out,
const OpSchema& schema);
const std::vector<Argument>& args() const {
return args_;
}
const std::vector<std::pair<const char*, const char*>>& input_desc() const {
return input_desc_;
}
const std::vector<std::pair<const char*, const char*>>& output_desc() const {
return output_desc_;
}
bool private_op() {
return private_;
}
bool inputs_can_cross_devices() const {
return inputs_can_cross_devices_;
}
/**
* @brief Returns the required device location of inputs and outputs.
*/
using DeviceInferenceFunctionType = std::function<
std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>(
const OperatorDef& def)>;
OpSchema& DeviceInferenceFunction(DeviceInferenceFunctionType function);
/**
* @brief Infer required device location of an op's inputs and outputs
*/
inline std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>
InferDevice(const OperatorDef& def) const {
return device_inference_function_(def);
}
// The helper is build sparse input with values, keys, weights and lengths;
// e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// weights = [1, 2, 3, 4, 5, 6, 7, 8, 9]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& WeightedValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index,
size_t weight_index);
// The helper is build sparse input with values, keys, weights and lengths;
// e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& ValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index);
// The helper is build sparse input with values and lengths; e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& ValueLengthInputFillers(size_t value_index, size_t length_index);
OpSchema& DisallowInputFillers();
std::vector<TensorFiller> InputFillers(
const std::vector<std::vector<int64_t>>& shapes) const;
private:
std::vector<TensorFiller> SupplyDenseFillers(
const std::vector<std::vector<int64_t>>& shapes);
private:
string type_;
string file_;
string doc_;
string onnx_schema_;
std::vector<Argument> args_{};
std::vector<std::pair<const char*, const char*>> input_desc_{};
std::vector<std::pair<const char*, const char*>> output_desc_{};
int line_ = 0;
int min_input_ = 0;
int max_input_ = std::numeric_limits<int>::max();
int min_output_ = 0;
int max_output_ = std::numeric_limits<int>::max();
bool private_ = false;
bool inputs_can_cross_devices_ = false;
std::function<bool(int)> num_inputs_allowed_ = [](int) { return true; };
std::function<bool(int)> num_outputs_allowed_ = [](int) { return true; };
std::function<bool(int, int)> num_inputs_outputs_allowed_ = [](int, int) {
return true;
};
std::function<int(int)> calculate_output_;
// In default, any in-place operation is neither allowed nor enforced.
std::function<bool(int, int)> inplace_allowed_ = [](int, int) {
return false;
};
std::function<bool(int, int)> inplace_enforced_ = [](int, int) {
return false;
};
TensorInferenceFunctionType tensor_inference_function_;
std::unique_ptr<CostInferenceFunctionType> cost_inference_function_ = nullptr;
DeviceInferenceFunctionType device_inference_function_;
std::function<std::vector<TensorFiller>(
const std::vector<std::vector<int64_t>>&)>
filler_supplier_ =
[this](const std::vector<std::vector<int64_t>>& shapes) {
return SupplyDenseFillers(shapes);
};
};
/**
* @brief A registry to hold all the operator schemas.
*/
class TORCH_API OpSchemaRegistry {
public:
static OpSchema&
NewSchema(const string& key, const string& file, const int line);
static const OpSchema* Schema(const string& key) {
auto& m = map();
auto it = m.find(key);
if (it != m.end()) {
return &it->second;
} else {
return nullptr;
}
}
private:
// OpSchemaRegistry should not need to be instantiated.
OpSchemaRegistry() = delete;
/**
* @brief Returns the underlying string to OpSchema map.
*
* You should not manually manipulate the map object returned. Instead, use
* the macros defined such as OPERATOR_SCHEMA to register your operator
* schema.
*
* We wrap it inside a function to avoid the static initialization order
* fiasco.
*/
static CaffeMap<string, OpSchema>& map();
};
// Helper function for creating simple tensorproto with dimension and type
template <typename T_I = int>
inline TensorShape CreateTensorShape(
vector<T_I> dims,
::caffe2::TensorProto_DataType dt) {
TensorShape ts;
for (T_I d : dims) {
ts.add_dims(d);
}
ts.set_data_type(dt);
return ts;
}
// Helper function
inline vector<int64_t> GetDimsVector(const TensorShape& shape) {
vector<int64_t> dims;
for (auto d : shape.dims()) {
dims.push_back(d);
}
return dims;
}
// Helper function
inline uint64_t nElemFromDim(const TensorShape& X, int dim = 0) {
CAFFE_ENFORCE_GE(dim, 0, "Invalid maximum index specified");
uint64_t nElem = 1;
for (const auto i : c10::irange(dim, X.dims_size())) {
nElem *= X.dims(i);
}
return nElem;
}
// Helper function
inline uint64_t nElemBetweenDim(const TensorShape& X, int start, int stop) {
CAFFE_ENFORCE_GE(start, 0, "Invalid maximum index specified");
CAFFE_ENFORCE_LE(stop, X.dims_size(), "Invalid maximum index specified");
uint64_t nElem = 1;
for (const auto i : c10::irange(start, stop)) {
nElem *= X.dims(i);
}
return nElem;
}
// Helper function for infer op inputs and outputs device information.
inline std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>
InferOpInputOutputDevice(const OperatorDef& op) {
auto op_schema = OpSchemaRegistry::Schema(op.type());
if (op_schema) {
// op_schema found
return op_schema->InferDevice(op);
} else {
// No schema for op.type registered
auto temp_schema = OpSchema();
return temp_schema.InferDevice(op);
}
}
template <uint64_t OpsPerPoint>
OpSchema::Cost PointwiseCostInference(
const OperatorDef& /* unused */,
const vector<TensorShape>& inputs) {
struct OpSchema::Cost c;
const TensorShape X = inputs[0];
uint64_t nElemX = nElemFromDim(X);
uint64_t nElemRead = 0;
for (const auto i : c10::irange(inputs.size())) {
nElemRead += nElemFromDim(inputs[i]);
}
c.flops = nElemX * OpsPerPoint;
auto const& X_element_size_byte =
DataTypeToTypeMeta(X.data_type()).itemsize();
c.bytes_read = nElemRead * X_element_size_byte;
c.bytes_written = nElemX * X_element_size_byte;
return c;
}
} // namespace caffe2
#if defined(_MSC_VER)
#define EXPORT_IF_NOT_MSVC
#else
#define EXPORT_IF_NOT_MSVC C10_EXPORT
#endif
#ifndef CAFFE2_NO_OPERATOR_SCHEMA
#define OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
&OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#else // CAFFE2_NO_OPERATOR_SCHEMA
#define OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
1 ? nullptr : &OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#endif // CAFFE2_NO_OPERATOR_SCHEMA
#ifdef CAFFE2_NO_GRADIENT_OPS
#define GRADIENT_OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
1 ? nullptr : &OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#else
#define GRADIENT_OPERATOR_SCHEMA(name) OPERATOR_SCHEMA(name)
#endif
#endif // CAFFE2_CORE_OPERATOR_SCHEMA_H_