-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
122 lines (102 loc) · 3.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import os
from os import path
import copy
from tqdm import tqdm
import numpy as np
import torch
from torch import nn
from gan_training import utils
from gan_training.checkpoints import CheckpointIO
from gan_training.distributions import get_ydist, get_zdist
from gan_training.eval import Evaluator
from gan_training.config import (
load_config, build_models
)
# Arguments
parser = argparse.ArgumentParser(
description='Test a trained GAN and create visualizations.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--oldmodel', type=str, help='Path to oldmodel.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
config = load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
# Shorthands
nlabels = config['data']['nlabels']
out_dir = config['training']['out_dir']
batch_size = config['test']['batch_size']
sample_size = config['test']['sample_size']
sample_nrow = config['test']['sample_nrow']
checkpoint_dir = path.join(out_dir, 'chkpts')
img_dir = path.join(out_dir, 'test', 'img')
img_all_dir = path.join(out_dir, 'test', 'img_all')
# Creat missing directories
if not path.exists(img_dir):
os.makedirs(img_dir)
if not path.exists(img_all_dir):
os.makedirs(img_all_dir)
# Logger
checkpoint_io = CheckpointIO(
checkpoint_dir=checkpoint_dir
)
# Get model file
model_file = config['test']['model_file']
# Models
device = torch.device("cuda:0" if is_cuda else "cpu")
generator, discriminator = build_models(config)
print(generator)
print(discriminator)
# Put models on gpu if needed
generator = generator.to(device)
discriminator = discriminator.to(device)
# Use multiple GPUs if possible
generator = nn.DataParallel(generator)
discriminator = nn.DataParallel(discriminator)
# Register modules to checkpoint
checkpoint_io.register_modules(
generator=generator,
discriminator=discriminator,
)
# Test generator
if config['test']['use_model_average']:
generator_test = copy.deepcopy(generator)
checkpoint_io.register_modules(generator_test=generator_test)
else:
generator_test = generator
# Distributions
ydist = get_ydist(nlabels, device=device)
zdist = get_zdist(config['z_dist']['type'], config['z_dist']['dim'],
device=device)
# Evaluator
evaluator = Evaluator(generator_test, zdist, ydist,
batch_size=batch_size, device=device)
# Load checkpoint if existant
load_dict = checkpoint_io.load(args.oldmodel)
it = load_dict.get('it', -1)
epoch_idx = load_dict.get('epoch_idx', -1)
# Inception score
if config['test']['compute_inception']:
print('Computing inception score...')
inception_mean, inception_std = evaluator.compute_inception_score()
print('Inception score: %.4f +- %.4f' % (inception_mean, inception_std))
# Samples
print('Creating samples...')
ztest = zdist.sample((sample_size,))
x = evaluator.create_samples(ztest)
utils.save_images(x, path.join(img_all_dir, '%08d.png' % it),
nrow=sample_nrow)
img_list = []
for i in range(500):
ztest = zdist.sample((100,))
x = evaluator.create_samples(ztest)
img_list.append(x.cpu().numpy())
img_list = np.concatenate(img_list, axis=0)
print(img_list.shape)
np.save("gen.npy", img_list)
if config['test']['conditional_samples']:
for y_inst in tqdm(range(nlabels)):
x = evaluator.create_samples(ztest, y_inst)
utils.save_images(x, path.join(img_dir, '%04d.png' % y_inst),
nrow=sample_nrow)