-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_triplegan_final_elr.py
280 lines (241 loc) · 10.3 KB
/
train_triplegan_final_elr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import copy
import torch
import torch.nn as nn
import numpy as np
from library import inputs
from Utils.checkpoints import save_context, Logger
from Utils import flags
from Utils import config
import Torture
from library import loss_triplegan, evaluation
import library.loss_cla as loss_classifier
from library.mean_teacher import optim_weight_swa
FLAGS = flags.FLAGS
KEY_ARGUMENTS = config.load_config(FLAGS.config_file)
text_logger, MODELS_FOLDER, SUMMARIES_FOLDER = save_context(__file__, KEY_ARGUMENTS)
# FLAGS.g_model_name = FLAGS.model_name
# FLAGS.d_model_name = FLAGS.model_name
torch.manual_seed(1234)
torch.cuda.manual_seed(1235)
np.random.seed(1236)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
FLAGS.device = device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_iter_d = 5 if "sngan" in FLAGS.g_model_name else 1
def sigmoid_rampup(global_step, start_iter, end_iter):
if global_step < start_iter:
return 0.0
rampup_length = end_iter - start_iter
cur_ramp = global_step - start_iter
cur_ramp = np.clip(cur_ramp, 0, rampup_length)
phase = 1.0 - cur_ramp / rampup_length
return np.exp(-5.0 * phase * phase)
itr = inputs.get_data_iter(batch_size=FLAGS.bs_c, subset=FLAGS.n_labels)
# itr_u = inputs.get_data_iter(batch_size=FLAGS.bs_c)
netG, optim_G = inputs.get_generator_optimizer()
netD, optim_D = inputs.get_discriminator_optimizer()
netC, optim_c = inputs.get_classifier_optimizer()
netG, netD, netC = netG.to(device), netD.to(device), netC.to(device)
netG = nn.DataParallel(netG)
netD = nn.DataParallel(netD)
netC = nn.DataParallel(netC)
netC_T, _ = inputs.get_classifier_optimizer()
netC_T = netC_T.to(device)
netC_T = nn.DataParallel(netC_T)
netC.train()
netC_T.train()
Torture.update_average(netC_T, netC, 0)
for p in netC_T.parameters():
p.requires_grad_(False)
if FLAGS.c_step == "ramp_swa":
netC_swa, _ = inputs.get_classifier_optimizer()
netC_swa = netC_swa.to(device)
netC_swa = nn.DataParallel(netC_swa)
netC_swa.train()
swa_optim = optim_weight_swa.WeightSWA(netC_swa)
for p in netC_swa.parameters():
p.requires_grad_(False)
Torture.update_average(netC_swa, netC, 0)
checkpoint_io = Torture.utils.checkpoint.CheckpointIO(checkpoint_dir=MODELS_FOLDER)
if FLAGS.c_step == "ramp_swa":
checkpoint_io.register_modules(
netG=netG,
netD=netD,
netC=netC,
netC_T=netC_T,
netC_swa=netC_swa,
optim_G=optim_G,
optim_D=optim_D,
optim_c=optim_c,
)
else:
checkpoint_io.register_modules(
netG=netG,
netD=netD,
netC=netC,
netC_T=netC_T,
optim_G=optim_G,
optim_D=optim_D,
optim_c=optim_c,
)
logger = Logger(log_dir=SUMMARIES_FOLDER)
# train
print_interval = 50
image_interval = 500
max_iter = FLAGS.n_iter
pretrain_inter = FLAGS.n_iter_pretrain
loss_func_g = loss_triplegan.g_loss_dict[FLAGS.gan_type]
loss_func_d = loss_triplegan.d_loss_dict[FLAGS.gan_type]
loss_func_c_adv = loss_triplegan.c_loss_dict[FLAGS.gan_type]
loss_func_c = loss_classifier.c_loss_dict[FLAGS.c_loss]
step_func = loss_classifier.c_step_func[FLAGS.c_step]
logger_prefix = "Itera {}/{} ({:.0f}%)"
for i in range(pretrain_inter): # 1w
tloss, l_loss, u_loss = loss_func_c(netC, netC_T, i, itr, itr, device)
# step_func(optim_c, netC, netC_T, i, tloss)
if FLAGS.c_step == "ramp_swa":
step_func(optim_c, swa_optim, netC, netC_T, i, tloss)
else:
step_func(optim_c, netC, netC_T, i, tloss)
logger.add("training_pre", "loss", tloss.item(), i + 1)
logger.add("training_pre", "l_loss", l_loss.item(), i + 1)
logger.add("training_pre", "u_loss", u_loss.item(), i + 1)
if (i + 1) % image_interval == 0:
netC.train()
netC_T.train()
for _ in range(int(FLAGS.n_labels/FLAGS.batch_size)):
data_u, _ = itr.__next__()
_ = netC_T(data_u.to(device))
netC.eval()
netC_T.eval()
with torch.no_grad():
total_t, correct_t, loss_t = evaluation.test_classifier(netC)
total_tt, correct_tt, loss_tt = evaluation.test_classifier(netC_T)
netC.train()
netC_T.train()
logger.add("testing", "loss", loss_t.item(), i + 1)
logger.add("testing", "accuracy", 100 * (correct_t / total_t), i + 1)
logger.add("testing", "loss_t", loss_tt.item(), i + 1)
logger.add("testing", "accuracy_t", 100 * (correct_tt / total_tt), i + 1)
str_meg = logger_prefix.format(i + 1, max_iter, 100 * ((i + 1) / max_iter))
logger.log_info(str_meg, text_logger.info, ["testing"])
if (i + 1) % print_interval == 0:
prefix = logger_prefix.format(i + 1, max_iter, (100 * i + 1) / max_iter)
cats = ["training_pre"]
logger.log_info(prefix, text_logger.info, cats=cats)
for i in range(pretrain_inter, max_iter + pretrain_inter):
data, label = itr.__next__()
data, label = data.to(device), label.to(device)
# data_u, _ = itr.__next__()
# data_u_d, _ = itr.__next__()
# data_u, data_u_d = data_u.to(device), data_u_d.to(device)
for _ in range(n_iter_d):
data, label = itr.__next__()
data, label = data.to(device), label.to(device)
data_u, _ = itr.__next__()
data_u = data_u.to(device)
sample_z = torch.randn(FLAGS.bs_g, FLAGS.g_z_dim).to(device)
if FLAGS.bcr:
loss_d, dreal, dfake_g, dfake_c = loss_triplegan.loss_hinge_dis_elr_bcr(
netD, netG, netC, data, sample_z, label, data_u
)
# elif FLAGS.icr:
# loss_d, dreal, dfake_g, dfake_c = loss_triplegan.loss_hinge_dis_elr_icr(
# netD, netG, netC, data, sample_z, label, data_u, device
# )
else:
loss_d, dreal, dfake_g, dfake_c = loss_triplegan.loss_hinge_dis_elr(
netD, netG, netC, data, sample_z, label, data_u
)
optim_D.zero_grad()
loss_d.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netD.parameters(), FLAGS.clip_value)
optim_D.step()
logger.add("training_d", "loss", loss_d.item(), i + 1)
logger.add("training_d", "dreal", dreal.item(), i + 1)
logger.add("training_d", "dfake_g", dfake_g.item(), i + 1)
logger.add("training_d", "dfake_c", dfake_c.item(), i + 1)
sample_z = torch.randn(FLAGS.bs_g, FLAGS.g_z_dim).to(device)
# if FLAGS.icr:
# loss_g, fake_g = loss_triplegan.loss_hinge_gen_icr(
# netD, netG, sample_z, label, device
# )
# else:
loss_g, fake_g = loss_func_g(netD, netG, sample_z, label)
optim_G.zero_grad()
loss_g.backward()
if FLAGS.clip_value > 0:
torch.nn.utils.clip_grad_norm_(netG.parameters(), FLAGS.clip_value)
optim_G.step()
logger.add("training_g", "loss", loss_g.item(), i + 1)
logger.add("training_g", "fake_g", fake_g.item(), i + 1)
tloss_c_adv, fake_c = loss_func_c_adv(netD, netC, data)
adv_ramp_coe = sigmoid_rampup(i, FLAGS.adv_ramp_start, FLAGS.adv_ramp_end)
loss_c_adv = tloss_c_adv * adv_ramp_coe
loss_c_ssl, l_c_loss, u_c_loss = loss_func_c(netC, netC_T, i, itr, itr, device)
sample_z = torch.randn(FLAGS.bs_g, FLAGS.g_z_dim).to(device)
if FLAGS.consist_pdl:
tloss_c_pdl = loss_triplegan.pseudo_discriminative_loss_MT(
netC, netG, netC_T, sample_z, label
)
else:
tloss_c_pdl = loss_triplegan.pseudo_discriminative_loss(
netC, netG, sample_z, label
)
pdl_ramp_coe = sigmoid_rampup(i, FLAGS.pdl_ramp_start, FLAGS.pdl_ramp_end)
loss_c_pdl = tloss_c_pdl * pdl_ramp_coe
loss_c = (
FLAGS.alpha_c_adv * loss_c_adv + FLAGS.alpha_c_pdl * loss_c_pdl + loss_c_ssl
)
if FLAGS.c_step == "ramp_swa":
step_func(optim_c, swa_optim, netC, netC_T, i, loss_c)
else:
step_func(optim_c, netC, netC_T, i, loss_c)
logger.add("training_c", "loss", loss_c.item(), i + 1)
logger.add("training_c", "loss_adv", loss_c_adv.item(), i + 1)
logger.add("training_c", "loss_ssl", loss_c_ssl.item(), i + 1)
logger.add("training_c", "loss_pdl", loss_c_pdl.item(), i + 1)
logger.add("training_c", "fake_c", fake_c.item(), i + 1)
if (i + 1) % print_interval == 0:
prefix = logger_prefix.format(i + 1, max_iter, (100 * i + 1) / max_iter)
cats = ["training_d", "training_g", "training_c"]
logger.log_info(prefix, text_logger.info, cats=cats)
if i == FLAGS.n_iter_pretrain or (i + 1) % image_interval == 0:
netC.train()
netC_T.train()
for _ in range(int(FLAGS.n_labels/FLAGS.batch_size)):
data_u, _ = itr.__next__()
_ = netC_T(data_u.to(device))
netC.eval()
netC_T.eval()
with torch.no_grad():
sample_z = torch.randn(100, FLAGS.g_z_dim).to(device)
# tlabel = label[: FLAGS.bs_g // 10]
tlabel = torch.from_numpy(np.array([0,1,2,3,4,5,6,7,8,9])).to(device)
tlabel = torch.cat([tlabel for _ in range(10)], 0)
x_fake = netG(sample_z, tlabel)
logger.add_imgs(x_fake, "img{:08d}".format(i + 1), nrow=FLAGS.bs_g // 10)
total_t, correct_t, loss_t = evaluation.test_classifier(netC)
total_tt, correct_tt, loss_tt = evaluation.test_classifier(netC_T)
netC.train()
netC_T.train()
if FLAGS.c_step == "ramp_swa":
netC_swa.train()
for _ in range(300):
data_u, _ = itr.__next__()
_ = netC_swa(data_u.to(device))
netC_swa.eval()
total_s, correct_s, loss_s = evaluation.test_classifier(netC_swa)
logger.add("testing", "loss_s", loss_s.item(), i + 1)
logger.add("testing", "accuracy_s", 100 * (correct_s / total_s), i + 1)
logger.add("testing", "loss", loss_t.item(), i + 1)
logger.add("testing", "accuracy", 100 * (correct_t / total_t), i + 1)
logger.add("testing", "loss_t", loss_tt.item(), i + 1)
logger.add("testing", "accuracy_t", 100 * (correct_tt / total_tt), i + 1)
str_meg = logger_prefix.format(i + 1, max_iter, 100 * ((i + 1) / max_iter))
logger.log_info(str_meg, text_logger.info, ["testing"])
if (i + 1) % FLAGS.save_every == 0:
logger.save_stats("Model_stats.pkl")
file_name = "model" + str(i + 1) + ".pt"
checkpoint_io.save(file_name)