-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdepolarizing_plugin.py
275 lines (232 loc) · 13.2 KB
/
depolarizing_plugin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import random
import numpy as np
from itertools import product
from copy import deepcopy
from qat.comm.datamodel.ttypes import OpType
from qat.comm.exceptions.ttypes import PluginException, ErrorType
from qat.comm.shared.ttypes import ProcessingType
from qat.comm.datamodel.ttypes import Op
from qat.core.plugins import AbstractPlugin
from qat.core.util import extract_syntax
from qat.core import Batch
from qat.core import Result, BatchResult
from qat.core.wrappers.result import Sample
from qat.core.wrappers.result import aggregate_data
from utils_tuto import make_matrix
from qat.core.circuit_builder.matrix_util import np_to_circ, circ_to_np
from qat.comm.datamodel.ttypes import Matrix, ComplexNumber, Op, GateDefinition, GSyntax
class DepolarizingPluginVec(AbstractPlugin):
r"""
When used to build a stack with a perfect QPU, it is equivalent to a noisy QPU with a depolarizing noise model.
Here, we define the depolarizing noise model by its action on the density matrix:
.. math::
\mathcal{E}(\rho) = (1 - p) \rho + \frac{p}{4^{n_\mathrm{qbits}}-1}\sum_{k = 1}^{4^{n_\mathrm{qbits}}-1} P_k \rho P_k
where :math:`\lbrace P_k, k = 0 \dots 4^{n_\mathrm{qbits}} \rbrace` denotes
the set of all products of Pauli matrices (including the identity) for
:math:`n_\mathrm{qubits}` qubits. By convention, :math:`P_0 = I_{2^{n_\mathrm{qbits}}}`.
Args:
prob_1qb (float, optional): 1-qbit depolarizing probability.
Defaults to 0.0.
prob_2qb (float, optional): 2-qbit depolarizing probability.
Defaults to 0.0.
n_samples (int, optional): number of stochastic samples.
Defaults to 1000.
seed (int, optional): seed for random number generator.
Defaults to 1425.
verbose (bool, optional): for verbose output. Defaults to False.
"""
def __init__(self, prob_1qb=0.0, prob_2qb=0.0, verbose=False):
self.prob_1qb = prob_1qb
self.prob_2qb = prob_2qb
self.verbose = verbose
self.nbshots = []
self.nbqbits = []
self.qubits = []
self.job_type = []
self.job_observable = []
def compile(self, batch, harware_specs):
# if len(batch.jobs) != 1:
# raise PluginException(code=ErrorType.INVALID_ARGS,
# message="This plugin supports only single jobs"
# ", got %s instead"%len(batch.jobs))
self.nbshots = []
self.nbqbits = []
self.qubits = []
self.job_type = []
self.job_observable = []
new_batch = []
for job_ind, job in enumerate(batch.jobs):
self.nbshots.append(job.nbshots)
self.nbqbits.append(job.circuit.nbqbits)
self.qubits.append(job.qubits)
self.job_type.append(job.type)
self.job_observable.append(job.observable)
list_2qb_paulis = ["%s%s"%(p1, p2)
for p1, p2 in product(["I", "X", "Y", "Z"],
repeat=2)
if p1 != 'I' or p2 !='I']
pauli_mats = {"I": np.identity(2),
"X": np.array([[0, 1], [1, 0]]),
"Y": np.array([[0, -1j], [1j, 0]]),
"Z": np.array([[1, 0], [0, -1]])
}
one_qb_depol_superop = (1-self.prob_1qb)*np.identity(4, dtype=np.complex128)
for pauli in ["X", "Y", "Z"]:
one_qb_depol_superop += self.prob_1qb/3 * np.kron(pauli_mats[pauli], np.conj(pauli_mats[pauli]))
depol1_superop = np_to_circ(one_qb_depol_superop)
two_qb_depol_superop = (1-self.prob_2qb)*np.identity(16, dtype=np.complex128)
for pauli in list_2qb_paulis:
pauli_mat2 = np.kron(pauli_mats[pauli[0]], pauli_mats[pauli[1]])
two_qb_depol_superop += self.prob_2qb/15 * np.kron(pauli_mat2, np.conj(pauli_mat2))
depol2_superop = np_to_circ(two_qb_depol_superop)
def _get_fresh_key(gate_dic):
i = 0
for k in gate_dic.keys():
if k[0] == '_' and k[1:].isdigit():
i = max(int(k[1:]), i)
return '_' + str(i + 1)
job_copy = deepcopy(job)
job_copy.nbshots = 0
job_copy.qubits = None
job_copy.type = ProcessingType.SAMPLE
job_copy.observable = None
job_copy.circuit.nbqbits = 2*self.nbqbits[job_ind]
job_copy.circuit.ops = []
if self.prob_1qb > 0:
gate_def = GateDefinition(arity=2,
name="depol1",
matrix=depol1_superop,
syntax=GSyntax(name="depol1", parameters=[]))
job_copy.circuit.gateDic["depol1"] = gate_def
if self.prob_2qb > 0:
gate_def = GateDefinition(arity=4,
name="depol2",
matrix=depol2_superop,
syntax=GSyntax(name="depol2", parameters=[]))
job_copy.circuit.gateDic["depol2"] = gate_def
for op in job.circuit:
if op.type != OpType.GATETYPE:
raise PluginException(code=ErrorType.ILLEGAL_GATES,
message="This plugin supports operators of type GATETYPE,"
" got %s instead"%op.type)
if len(op.qbits) > 2:
gdef = job_copy.circuit.gateDic[op.gate]
gname = extract_syntax(gdef, job_copy.circuit.gateDic)[0]
if gname != "STATE_PREPARATION":
raise PluginException(code=ErrorType.NBQBITS,
message="This plugin supports only 1 and 2-qbit gates,"
" got a gate acting on qbits %s instead"%op.qbits)
gdef = job_copy.circuit.gateDic[op.gate] # retrieving useful info.
if not gdef.matrix:
# StatePreparation case
gname = extract_syntax(gdef, job.circuit.gateDic)[0]
if gname == "STATE_PREPARATION":
matrix = gdef.syntax.parameters[0].matrix_p
np_matrix = circ_to_np(matrix)
if np_matrix.shape != (2**job.circuit.nbqbits, 1):
raise exceptions_types.QPUException(code=exceptions_types.ErrorType.ILLEGAL_GATES,
modulename="qat.pylinalg",
file="qat/pylinalg/simulator.py",
line=103,
message="Gate {} has wrong shape {}, should be {}!"\
.format(gname, np_matrix.shape, (2**job.circuit.nbqbits, 1)))
norm = np.linalg.norm(np_matrix)
if abs(norm - 1.0) > 1e-10:
raise exceptions_types.QPUException(code=exceptions_types.ErrorType.ILLEGAL_GATES,
modulename="qat.pylinalg",
file="qat/pylinalg/simulator.py",
line=103,
message="State preparation should be normalized, got norm = {} instead!"\
.format(norm))
new_mat = np.kron(np_matrix, np.conj(np_matrix))
gdef.syntax.parameters[0].matrix_p = np_to_circ(new_mat)
op.qbits += [qb + self.nbqbits[job_ind] for qb in op.qbits]
job_copy.circuit.ops.append(op)
continue
# first add gate U applied to qb q
job_copy.circuit.ops.append(op)
# then add gate U^* applied to qb q+nqbits
conj_op = deepcopy(op)
conj_op.qbits = [qb+self.nbqbits[job_ind] for qb in op.qbits]
mat = circ_to_np(job_copy.circuit.gateDic[conj_op.gate].matrix)
if np.linalg.norm(np.conj(mat) - mat) > 1e-12:
# need to include new gate in gateDic
new_key = _get_fresh_key(job_copy.circuit.gateDic)
gate_def = GateDefinition(arity=len(op.qbits),
name=new_key,
matrix=np_to_circ(np.conj(mat)),
syntax=GSyntax(name=new_key, parameters=[]))
job_copy.circuit.gateDic[new_key] = gate_def
conj_op.gate = new_key
job_copy.circuit.ops.append(conj_op)
# then add gate = sum_k E_k x E_k^* applied to qubits q, q', q+nqbits, q'+nqbits
if len(op.qbits) == 1 and self.prob_1qb > 0:
depol1_op = Op(gate="depol1", qbits=[op.qbits[0], op.qbits[0]+self.nbqbits[job_ind]], type=0)
job_copy.circuit.ops.append(depol1_op)
if len(op.qbits) == 2 and self.prob_2qb > 0:
depol2_op = Op(gate="depol2", qbits=[op.qbits[0], op.qbits[1],
op.qbits[0]+self.nbqbits[job_ind], op.qbits[1]+self.nbqbits[job_ind]],
type=0)
job_copy.circuit.ops.append(depol2_op)
new_batch.append(job_copy)
return Batch(new_batch, meta_data=batch.meta_data)
def post_process(self, batch_result):
result_list = []
for job_ind, result in enumerate(batch_result.results):
rho_vec = np.zeros(4**self.nbqbits[job_ind], np.complex128)
for sample in result:
rho_vec[sample.state.int] = sample.amplitude
#print(sample.state.int, sample.amplitude)
rho_vec = rho_vec.reshape(2**self.nbqbits[job_ind], 2**self.nbqbits[job_ind])
if self.verbose:
print("rho = ", rho_vec)
print("tr (rho)=", np.trace(rho_vec))
if self.job_type[job_ind] == ProcessingType.SAMPLE or self.job_observable[job_ind] is None:
# tracing out some qubits
if self.qubits[job_ind] != list(range(self.nbqbits[job_ind])):
qubits_to_trace_out = list(range(self.nbqbits[job_ind]))
for qb in self.qubits[job_ind]:
qubits_to_trace_out.remove(qb)
def partial_trace(rho, indices):
"""trace out 'indices' from matrix 'rho' """
nbqbits = int(np.log2(rho.shape[0]))
shape = [2 for _ in range(nbqbits*2)]
rho = rho.reshape(*shape)
for qb in reversed(indices):
rho = np.trace(rho, axis1=qb, axis2=qb+nbqbits)
nbqbits -= 1
return rho
rho_vec = partial_trace(rho_vec, qubits_to_trace_out)
probs = rho_vec.diagonal()
res = Result()
res.raw_data = []
if self.nbshots[job_ind] == 0:
for int_state, val in enumerate(probs):
sample = Sample(state=int_state,
probability=np.real(val))
res.raw_data.append(sample)
result_list.append(res)
else:
cumul = np.cumsum(probs) # cumulative distribution function.
intprob_list = [] # return object
for _ in range(self.nbshots[job_ind]):
res_int = np.searchsorted(cumul, np.random.random()) # sampling
sample = Sample(state=res_int)
res.raw_data.append(sample)
res = aggregate_data(res)
result_list.append(res)
elif self.job_type[job_ind] == ProcessingType.OBSERVABLE:
if self.nbshots[job_ind] == 0:
O_mat = make_matrix(self.job_observable[job_ind])
res = np.trace(np.dot(rho_vec, O_mat))
result_list.append(Result(value=res, error=None))
else:
raise Exception("nbshots > 0 not yet implemented")
else:
raise Exception("Unknown job type")
self.nbshots = []
self.nbqbits = []
self.qubits = []
self.job_type = []
self.job_observable = []
return BatchResult(results=result_list, meta_data=batch_result.meta_data)