-
Notifications
You must be signed in to change notification settings - Fork 2
/
pytorch.py
224 lines (186 loc) · 8.29 KB
/
pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from __future__ import print_function
from time import time
import argparse
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
# Distributed Training Releated Imports
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.utils.data import DistributedSampler
import torch.multiprocessing as mp
# Distributed Training Releated Imports
# Profling Related Imports
from torch.profiler import profile, record_function, ProfilerActivity, schedule
# Profling Related Imports
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch, accumulate_grad_batches):
model.train()
my_schedule = schedule(
skip_first=0,
wait=1,
warmup=1,
active=1,
repeat=1
)
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json")
with profile(
activities=[ProfilerActivity.CPU],
with_stack=False,
schedule=my_schedule,
on_trace_ready=trace_handler,
) as prof:
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
if (batch_idx % accumulate_grad_batches == 0 or batch_idx == len(train_loader) - 1):
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
prof.step()
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# Create progress group
def setup_ddp(rank, world_size):
"""Setup ddp enviroment"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "8088"
create_progress_group(rank, world_size)
def create_progress_group(rank, world_size):
print(f"REGISTERING RANK {rank}")
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
# Create progress group
def main(rank, world_size, ddp_spawn):
t0 = time()
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=3, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--use_ddp', type=int, default=1, metavar='N', help='Whether to use DDP')
parser.add_argument('--accumulate_grad_batches', type=int, default=2, metavar='N', help='How to perform gradient accumulation')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if args.use_ddp:
# Setup DDP
setup_ddp(rank, world_size)
torch.cuda.set_device(f"cuda:{rank}")
# Setup DDP
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True, transform=transform)
dataset2 = datasets.MNIST('../data', train=False, transform=transform)
# Create distributed Sampler
if args.use_ddp:
train_kwargs['sampler'] = DistributedSampler(dataset1, num_replicas=world_size, rank=rank, shuffle=False)
test_kwargs['sampler'] = DistributedSampler(dataset2, num_replicas=world_size, rank=rank, shuffle=False)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
# Create distributed Sampler
model = Net().to(device)
if args.use_ddp:
# Wrap into DistributedDataParallel
model = DistributedDataParallel(model, device_ids=[rank])
# Wrap into DistributedDataParallel
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, args.accumulate_grad_batches)
test(model, device, test_loader)
scheduler.step()
# Save only on rank 0 to avoid rank 1 to overrides the checkpoint
if not args.use_ddp or rank == 0:
torch.save(model.state_dict(), "mnist_cnn.pt")
# Save only on rank 0 to avoid rank 1 to overrides the checkpoint
if args.use_ddp:
# Teardown
torch.distributed.destroy_process_group()
# Teardown
print(f"TIME SPENT: {time() - t0}")
if __name__ == '__main__':
use_spawn = int(os.getenv("USE_SPAWN", 1))
worldsize = int(os.getenv("WORLD_SIZE", 2))
if use_spawn:
# WORLD_SIZE=2 USE_SPAWN=1 python ddp_mnist_spawn/pytorch.py
mp.spawn(main, args=(worldsize, use_spawn), nprocs=worldsize)
else:
# terminal 1: WORLD_SIZE=2 LOCAL_RANK=1 python ddp_mnist_spawn/pytorch.py
# terminal 2: WORLD_SIZE=2 LOCAL_RANK=0 python ddp_mnist_spawn/pytorch.py
main(int(os.getenv("LOCAL_RANK")), worldsize, use_spawn)