-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrandomized_benchmark.py
executable file
·45 lines (33 loc) · 1.57 KB
/
randomized_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python
import glob
from pathlib import Path
import networkx as nx
import numpy as np
import qcopt
def random_independent_set(G):
n = len(G.nodes)
stopping_condition = [0] * n
independent_set = []
while sum(stopping_condition) < n:
unvisited_nodes = [i for i, bit in enumerate(stopping_condition) if bit == 0]
next_node = np.random.choice(unvisited_nodes)
stopping_condition[next_node] = 1
if not any([neighbor in independent_set for neighbor in G.neighbors(next_node)]):
independent_set.append(next_node)
mis_bitstr = ''.join(['1' if n in independent_set else '0' for n in sorted(list(G.nodes))])
if not qcopt.graph_funcs.is_indset(mis_bitstr, G, little_endian=False):
raise Exception('Produced an invalid independent set!')
return len(independent_set)
all_graph_types = glob.glob('benchmark_graphs/N*graphs')
for graph_type in all_graph_types:
all_graphs = glob.glob(f'{graph_type}/G*.txt')
savepath = f'benchmark_results/randomized_mis/{graph_type.split("/")[-1]}'
Path(savepath).mkdir(parents=True, exist_ok=True)
for graph in all_graphs:
G = qcopt.graph_funcs.graph_from_file(graph)
rand_mis = []
for _ in range(5):
rand_mis.append(random_independent_set(G))
print(f'{"/".join(graph.split("/")[-2:])} avg random mis size: {np.mean(rand_mis)}')
with open(f'{savepath}/{graph.split("/")[-1].strip(".txt")}_rand_results.txt', 'w') as fn:
fn.write(f'Average random mis size over 5 repetitions: {np.mean(rand_mis)}')