-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask.py
149 lines (111 loc) · 4.45 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This training script trains binary classifier on Sentinel-2 satellite images.
The model is a fully convolutional neural network that predicts whether a power
plant is turned on or off.
A Sentinel-2 image consists of 13 bands. Each band contains the data for a
specific range of the electromagnetic spectrum.
A JPEG image consists of three channels: Red, Green, and Blue. For Sentinel-2
images, these correspond to Band 4 (red), Band 3 (green), and Band 2 (blue).
These bands contain the raw pixel data directly from the satellite sensors.
For more information on the Sentinel-2 dataset:
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
"""
from __future__ import annotations
import argparse
import tensorflow as tf
BANDS = [
"B1",
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
"B8",
"B8A",
"B9",
"B10",
"B11",
"B12",
]
LABEL = "is_powered_on"
BATCH_SIZE = 64
def get_args() -> dict:
"""Parses args."""
parser = argparse.ArgumentParser()
parser.add_argument("--bucket", required=True, type=str, help="GCS Bucket")
args = parser.parse_args()
return args
def parse_tfrecord(example_proto: bytes, features_dict: dict) -> dict:
"""Parses a single tf.train.Example."""
return tf.io.parse_single_example(example_proto, features_dict)
def create_features_dict() -> dict:
"""Creates dict of features."""
features_dict = {
name: tf.io.FixedLenFeature(shape=[33, 33], dtype=tf.float32) for name in BANDS
}
features_dict[LABEL] = tf.io.FixedLenFeature(shape=[1, 1], dtype=tf.float32)
return features_dict
def get_feature_and_label_vectors(
inputs: dict, features_dict: dict
) -> tuple[tf.Tensor, int]:
"""Formats data."""
label_value = tf.cast(inputs.pop(LABEL), tf.int32)
features_vec = [inputs[name] for name in BANDS]
# (bands, x, y) -> (x, y, bands)
features_vec = tf.transpose(features_vec, [1, 2, 0])
return features_vec, label_value
def create_datasets(bucket: str) -> tuple[tf.data.Dataset, tf.data.Dataset]:
"""Creates training and validation datasets."""
train_data_dir = f"gs://{bucket}/geospatial_training.tfrecord.gz"
eval_data_dir = f"gs://{bucket}/geospatial_validation.tfrecord.gz"
features_dict = create_features_dict()
training_dataset = (
tf.data.TFRecordDataset(train_data_dir, compression_type="GZIP")
.map(lambda example_proto: parse_tfrecord(example_proto, features_dict))
.map(lambda inputs: get_feature_and_label_vectors(inputs, features_dict))
.batch(64)
)
validation_dataset = (
tf.data.TFRecordDataset(eval_data_dir, compression_type="GZIP")
.map(lambda example_proto: parse_tfrecord(example_proto, features_dict))
.map(lambda inputs: get_feature_and_label_vectors(inputs, features_dict))
.batch(64)
)
return training_dataset, validation_dataset
def create_model(training_dataset: tf.data.Dataset) -> tf.keras.Model:
"""Creates model."""
feature_ds = training_dataset.map(lambda x, y: x)
normalizer = tf.keras.layers.experimental.preprocessing.Normalization()
normalizer.adapt(feature_ds)
inputs = tf.keras.Input(shape=(None, None, 13))
x = normalizer(inputs)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=33, activation="relu")(x)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=tf.keras.optimizers.Adam(0.0001),
loss="binary_crossentropy",
metrics=["accuracy"],
)
return model
def main() -> None:
args = get_args()
training_dataset, validation_dataset = create_datasets(args.bucket)
model = create_model(training_dataset)
model.fit(training_dataset, validation_data=validation_dataset, epochs=20)
model.save(f"gs://{args.bucket}/model_output")
if __name__ == "__main__":
main()