-
Notifications
You must be signed in to change notification settings - Fork 0
/
algorithms.lyx
18389 lines (13582 loc) · 261 KB
/
algorithms.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{clrscode3e}
\usepackage{listings}
\lstset{
language=Java,
frame=single,
tabsize=2
}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 1
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Algorithms and Data Structures
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
\series bold
Disclaimer
\series default
: These notes have been prepared with the
\series bold
only
\series default
purpose to help me pass the Computer Science qualifiying exam at the University
of Illinois at Chicago.
They are distributed as they are (including errors, typos, omissions, etc.)
to help other students pass this exam (and possibly relieving them from
part of the pain associated with such a process).
I take
\series bold
no responsibility
\series default
for the material contained in these notes (which means that you can't sue
me if you don't pass the qual!) Moreover, this pdf version is distributed
together with the original LaTeX (and LyX) sources hoping that someone
else will improve and correct them.
I mean in absolute no way to violate copyrights and/or take credit stealing
the work of others.
The ideas contained in these pages are
\series bold
not mine
\series default
but I've just aggregated information scattered all over the internet.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareA
like 3.0 Unported License.
\end_layout
\end_inset
\end_layout
\begin_layout Subsection*
Strongly suggested book
\end_layout
\begin_layout Standard
Before you even start reading this notes, do yourself a favor and go buy
the
\begin_inset Quotes eld
\end_inset
bible of algorithms
\begin_inset Quotes erd
\end_inset
a.k.a.
\emph on
Introduction to Algorithms, Third Edition
\emph default
by Cormen, Laiserson, Rivest, Stein.
(
\begin_inset CommandInset href
LatexCommand href
name "http://mitpress.mit.edu/algorithms/"
target "http://mitpress.mit.edu/algorithms/"
\end_inset
) It is very complete and clear.
Also, thanks to the authors for the beautiful
\family typewriter
clrscode3e
\family default
package that has been used to write the pseudocode of all the algorithms
in these notes.
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Newpage pagebreak
\end_inset
\end_layout
\begin_layout Standard
\series bold
Important!!!
\series default
Whenever talking about arrays we assume the index to ALWAYS start at 1 and
NOT 0.
\end_layout
\begin_layout Section
Analysis of algorithms
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Chapters 2, 3, 4
\end_layout
\end_inset
\end_layout
\begin_layout Itemize
\series bold
Loop invariants
\series default
are useful to demonstrate the correctness of an algorithm.
We need to show they hold during the three execution phases of an algorithm:
\emph on
Initialization
\emph default
,
\emph on
Maintenance
\emph default
and
\emph on
Termination
\emph default
.
They work similarly to math induction.
\end_layout
\begin_layout Itemize
Goal is to compute the
\emph on
running time
\emph default
of an algorithm (on a particular input!).
\end_layout
\begin_layout Itemize
Various types of analysis are possible (which running time are we considering?):
worst, best, average.
These depend on which input we are considering.
\end_layout
\begin_deeper
\begin_layout Itemize
Best case is rarely (never) used because it provides no useful information.
\end_layout
\begin_layout Itemize
Average case is difficult to guess sometime.
\end_layout
\begin_layout Itemize
Worst case gives an upper-bound for EVERY input, it occurs fairly often
and often matches the average case.
\end_layout
\end_deeper
\begin_layout Itemize
Instead of computing just the running time we are interested in the
\emph on
order of growth
\emph default
of the running time.
(asymptotic analysis)
\end_layout
\begin_layout Subsection
Asymptotic notation
\end_layout
\begin_layout Standard
Asymptotic notation applies to functions: we describe the running time of
algorithms as a function of the input size
\begin_inset Formula $n$
\end_inset
and we then apply the asymptotic notation to such a function.
\end_layout
\begin_layout Paragraph
\begin_inset Formula $\mathbf{\Theta}$
\end_inset
-notation
\end_layout
\begin_layout Standard
For a given function
\begin_inset Formula $g(n)$
\end_inset
, we denote
\begin_inset Formula $\Theta(g(n))$
\end_inset
the set of functions
\begin_inset Formula
\begin{eqnarray*}
\Theta(g(n)) & = & \{(f(n):\text{ there exist positive constants c_{1},c_{2} and n_{0} such that}\\
& & 0\leq c_{1}g(n)\leq f(n)\leq c_{2}g(n)\text{ for all }n\geq n_{0}\}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
We write
\begin_inset Formula $f(n)=\Theta(g(n))$
\end_inset
to indicate
\begin_inset Formula $f(n)\in\Theta(g(n))$
\end_inset
and say that
\begin_inset Formula $g(n)$
\end_inset
is an
\emph on
asymptotic tight bound
\emph default
for
\begin_inset Formula $f(n)$
\end_inset
.
\end_layout
\begin_layout Paragraph
\begin_inset Formula $\mathbf{O}$
\end_inset
-notation
\end_layout
\begin_layout Standard
For a given function
\begin_inset Formula $g(n)$
\end_inset
, we denote
\begin_inset Formula $O(g(n))$
\end_inset
the set of functions
\begin_inset Formula
\begin{eqnarray*}
O(g(n)) & = & \{(f(n):\text{ there exist positive constants \ensuremath{c}and n_{0} such that}\\
& & 0\leq f(n)\leq cg(n)\, for\, all\, n\geq n_{0}\}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
We write
\begin_inset Formula $f(n)=O(g(n))$
\end_inset
to indicate
\begin_inset Formula $f(n)\in O(g(n))$
\end_inset
and say that
\begin_inset Formula $g(n)$
\end_inset
is an
\emph on
asymptotic upper bound
\emph default
for
\begin_inset Formula $f(n)$
\end_inset
.
\end_layout
\begin_layout Standard
This notation is important because when we use
\begin_inset Formula $O$
\end_inset
-notation to describe the worst-case running time of an algorithm we have
a bound on the running time of the algorithm on
\emph on
every input
\emph default
.
When we say
\begin_inset Quotes eld
\end_inset
the running time of an algorithm is
\begin_inset Formula $O(g(n))$
\end_inset
\begin_inset Quotes erd
\end_inset
, we mean that there is a function
\begin_inset Formula $f(n)$
\end_inset
that is in
\begin_inset Formula $O(g(n))$
\end_inset
such that, no matter what particular input size
\begin_inset Formula $n$
\end_inset
is chosen, the running time on that particular input is bounded from above
by the value
\begin_inset Formula $f(n)$
\end_inset
.
\end_layout
\begin_layout Paragraph
\begin_inset Formula $\mathbf{\Omega}$
\end_inset
-notation
\end_layout
\begin_layout Standard
For a given function
\begin_inset Formula $g(n)$
\end_inset
, we denote
\begin_inset Formula $\Omega(g(n))$
\end_inset
the set of functions
\begin_inset Formula
\begin{eqnarray*}
\Omega(g(n)) & = & \{(f(n):\text{ there exist positive constants \ensuremath{c}and n_{0} such that}\\
& & 0\leq cg(n)\leq f(n)\, for\, all\, n\geq n_{0}\}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
We write
\begin_inset Formula $f(n)=\Omega(g(n))$
\end_inset
to indicate
\begin_inset Formula $f(n)\in\Omega(g(n))$
\end_inset
and say that
\begin_inset Formula $g(n)$
\end_inset
is an
\emph on
asymptotic lower bound
\emph default
for
\begin_inset Formula $f(n)$
\end_inset
.
\end_layout
\begin_layout Standard
When we say
\begin_inset Quotes eld
\end_inset
the running time of an algorithm is
\begin_inset Formula $\Omega(g(n))$
\end_inset
\begin_inset Quotes erd
\end_inset
, we mean that no matter what particular input of size
\begin_inset Formula $n$
\end_inset
is chosen for each value of
\begin_inset Formula $n$
\end_inset
, the running time on that input is at least a constant times
\begin_inset Formula $g(n)$
\end_inset
, for sufficiently large
\begin_inset Formula $n$
\end_inset
.
Equivalently we are giving a lower bound on the best-case running time
of an algorithm.
\end_layout
\begin_layout Subsubsection
Observations
\end_layout
\begin_layout Itemize
Note that in the definitions of all the previous asymptotic notations we
assumed that every function is
\emph on
asymptotically nonnegative
\emph default
which means that all functions are nonnegative whenever
\begin_inset Formula $n$
\end_inset
is sufficiently large.
\end_layout
\begin_layout Itemize
Note that it is important that we have some choices for the constants.
Therefore if we find just one choice for the constants that is enough to
apply the proper notation.
Conversely if we need to show that the notation is not true we need to
show that there is NO choice for the constants.
\end_layout
\begin_layout Itemize
In polynomials we can generally discard lower order terms when performing
asymptotic analysis because they are insignificant for large
\begin_inset Formula $n$
\end_inset
.
\end_layout
\begin_layout Itemize
For any two functions
\begin_inset Formula $f(n)$
\end_inset
and
\begin_inset Formula $g(n)$
\end_inset
, we have
\begin_inset Formula
\[
f(n)=\Theta(g(n))\iff f(n)=O(g(n))\, and\, f(n)=\Omega(g(n))
\]
\end_inset
\end_layout
\begin_layout Itemize
Transitivity, reflexivity and symmetry in
\begin_inset Formula $\Theta$
\end_inset
-notation and transpose symmetry in
\begin_inset Formula $\Omega$
\end_inset
-notation and
\begin_inset Formula $O$
\end_inset
-notation, apply to asymptotic comparison.
\end_layout
\begin_layout Paragraph
\begin_inset Formula $\mathbf{o}$
\end_inset
-notation
\end_layout
\begin_layout Standard
For a given function
\begin_inset Formula $g(n)$
\end_inset
, we denote
\begin_inset Formula $o(g(n))$
\end_inset
the set of functions
\begin_inset Formula
\begin{eqnarray*}
o(g(n)) & = & \{(f(n)\,:\,\forall c>0,\,\exists n_{0}>0:\\
& & 0\leq f(n)<cg(n)\text{ for all }n\geq n_{0}\}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
We write
\begin_inset Formula $f(n)=o(g(n))$
\end_inset
to indicate
\begin_inset Formula $f(n)\in o(g(n))$
\end_inset
and say that
\begin_inset Formula $f(n)$
\end_inset
is
\emph on
asymptotically smaller
\emph default
than
\begin_inset Formula $g(n)$
\end_inset
.
\end_layout
\begin_layout Standard
Intuitively the function
\begin_inset Formula $f(n)$
\end_inset
becomes insignificant relative to
\begin_inset Formula $g(n)$
\end_inset
as
\begin_inset Formula $n$
\end_inset
approaches infinity; that is,
\begin_inset Formula
\[
\underset{n\rightarrow\infty}{\lim}\frac{f(n)}{g(n)}=0
\]
\end_inset
\end_layout
\begin_layout Paragraph
\series medium
\begin_inset Formula $\mathbf{\omega}$
\end_inset
\series default
-notation
\end_layout
\begin_layout Standard
For a given function
\begin_inset Formula $g(n)$
\end_inset
, we denote
\begin_inset Formula $\omega(g(n))$
\end_inset
the set of functions
\begin_inset Formula
\begin{eqnarray*}
\omega(g(n)) & = & \{(f(n)\,:\,\forall c>0,\,\exists n_{0}>0:\\
& & 0\leq cg(n)<f(n)\text{ for all }n\geq n_{0}\}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
We write
\begin_inset Formula $f(n)=\omega(g(n))$
\end_inset
to indicate
\begin_inset Formula $f(n)\in\omega(g(n))$
\end_inset
and say that
\begin_inset Formula $f(n)$
\end_inset
is
\emph on
asymptotically larger
\emph default
than
\begin_inset Formula $g(n)$
\end_inset
.
\end_layout
\begin_layout Standard
We can also write
\begin_inset Formula $f(n)=\omega(g(n))\iff g(n)=o(f(n))$
\end_inset
.
\end_layout
\begin_layout Standard
The relation
\begin_inset Formula $f(n)=\omega(g(n))$
\end_inset
implies that
\begin_inset Formula
\[
\underset{n\rightarrow\infty}{\lim}\frac{f(n)}{g(n)}=\infty
\]
\end_inset
\end_layout
\begin_layout Standard
if the limit exists.
\end_layout
\begin_layout Subsubsection
Amortized analysis
\end_layout
\begin_layout Standard
Amortized analysis considers the entire sequence of operations of the program.
It is based on the idea that, while certain operations may be extremely
costly in resources, they cannot occur at a high enough frequency to weigh
down the entire program because the number of less costly operations will
far outnumber the costly ones in the long run, "paying back" the program
over a number of iterations.
\end_layout
\begin_layout Subsection
Common functions (refresher)
\end_layout
\begin_layout Subsubsection
Monotonicity
\end_layout
\begin_layout Standard
A function
\begin_inset Formula $f(n)$
\end_inset
is
\emph on
monotonically increasing
\emph default
if
\begin_inset Formula $m\leq n$
\end_inset
implies
\begin_inset Formula $f(m)\leq f(n)$
\end_inset
.
Similarly, it is
\emph on
monotonically decreasing
\emph default
if
\begin_inset Formula $m\leq n$
\end_inset
implies
\begin_inset Formula $f(m)\geq f(n)$
\end_inset
.
\end_layout
\begin_layout Subsubsection
Floors and ceilings
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
x-1<\lfloor x\rfloor\leq x\leq\lceil x\rceil<x+1
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\lceil n/2\rceil+\lfloor n/2\rfloor=n
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Exponentials
\end_layout
\begin_layout Itemize
\begin_inset Formula $a^{-1}=\frac{1}{a}$
\end_inset
\end_layout
\begin_layout Itemize
For all
\begin_inset Formula $n$
\end_inset
and all
\begin_inset Formula $a\geq1$
\end_inset
the function
\begin_inset Formula $a^{n}$
\end_inset
is monotonically increasing in
\begin_inset Formula $n$
\end_inset
.
\end_layout
\begin_layout Itemize
For all real constants
\begin_inset Formula $a>1$
\end_inset
and
\begin_inset Formula $b$
\end_inset
,
\begin_inset Formula $n^{b}=o(a^{n})$
\end_inset
.
\end_layout
\begin_layout Subsubsection
Logarithms
\end_layout
\begin_layout Itemize
Remember that
\begin_inset Formula $\log_{a}b=c$
\end_inset
means
\begin_inset Formula $a^{c}=b$
\end_inset
.
\end_layout
\begin_layout Itemize
When we write
\begin_inset Formula $\log n$
\end_inset
we mean
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\log_{2}n$
\end_inset
.
\end_layout
\begin_layout Itemize
\begin_inset Formula $\ln n=\log_{e}n$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $a=b^{\log_{b}a}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $a^{\log_{b}n}=n^{\log_{b}a}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\log_{b}a=\frac{\log_{c}a}{\log_{c}b}$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\log_{b}a=\frac{1}{lob_{a}b}$
\end_inset
\end_layout
\begin_layout Itemize
If the base is strictly greater than one then
\begin_inset Formula $\log_{b}a$
\end_inset
is strictly increasing.
\end_layout
\begin_layout Standard
Note how:
\begin_inset Formula
\[
log_{b}a\,\begin{cases}
>1 & \text{if }a>b\\
=1 & \text{if }a=b\\
<1 & \text{if }a<b
\end{cases}
\]
\end_inset
\end_layout
\begin_layout Standard
We say that a function
\begin_inset Formula $f(n)$
\end_inset
is polylogarithmically bounded if
\begin_inset Formula $f(n)=O(\lg^{k}n)$
\end_inset
for some constant
\begin_inset Formula $k$
\end_inset
.
For any constant
\begin_inset Formula $a>0$
\end_inset
,
\begin_inset Formula $\lg^{b}n=o(n^{a})$
\end_inset