-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfoundations.lyx
6140 lines (4759 loc) · 92.3 KB
/
foundations.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 1
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Foundations of Computer Science
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
\series bold
Disclaimer
\series default
: These notes have been prepared with the
\series bold
only
\series default
purpose to help me pass the Computer Science qualifiying exam at the University
of Illinois at Chicago.
They are distributed as they are (including errors, typos, omissions, etc.)
to help other students pass this exam (and possibly relieving them from
part of the pain associated with such a process).
I take
\series bold
no responsibility
\series default
for the material contained in these notes (which means that you can't sue
me if you don't pass the qual!) Moreover, this pdf version is distributed
together with the original LaTeX (and LyX) sources hoping that someone
else will improve and correct them.
I mean in absolute no way to violate copyrights and/or take credit stealing
the work of others.
The ideas contained in these pages are
\series bold
not mine
\series default
but I've just aggregated information scattered all over the internet.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareA
like 3.0 Unported License.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Section
Set Theory (Basic concepts)
\end_layout
\begin_layout Subsection
Definitions
\end_layout
\begin_layout Itemize
A
\emph on
set
\emph default
is an unordered collection of distinct objects.
\end_layout
\begin_layout Itemize
The
\emph on
empty set
\emph default
\begin_inset Formula $\emptyset$
\end_inset
is defined as
\begin_inset Formula $\emptyset=\{\nexists x:x\in\emptyset\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
universe set
\emph default
\begin_inset Formula $U$
\end_inset
is defined as
\begin_inset Formula $U=\{\forall x:x\in U\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
intersection
\emph default
of sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
is the set
\begin_inset Formula $A\cap B=\{x:x\in A\text{ and }x\in B\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
union
\emph default
of sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
is the set
\begin_inset Formula $A\cup B=\{x:x\in A\text{ or }x\in B\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
complement
\emph default
of set
\begin_inset Formula $A$
\end_inset
is the set
\begin_inset Formula $\bar{A}=\{x:x\notin A\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
difference
\emph default
of sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
is the set
\begin_inset Formula $A\backslash B=A\cap\bar{B}=\{x:x\in A\text{ and }x\notin B\}$
\end_inset
.
\end_layout
\begin_layout Itemize
The
\emph on
symmetric difference (XOR)
\emph default
of sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
is the set
\begin_inset Formula $A\otimes B=(A\backslash B)\cup(B\backslash A)$
\end_inset
.
\end_layout
\begin_layout Subsection
Properties
\begin_inset CommandInset label
LatexCommand label
name "sub:Properties"
\end_inset
\end_layout
\begin_layout Itemize
Empty set:
\begin_inset Formula $A\cup\emptyset=A$
\end_inset
and
\begin_inset Formula $A\cap\emptyset=\emptyset$
\end_inset
.
\end_layout
\begin_layout Itemize
Universe set:
\begin_inset Formula $A\cup U=U$
\end_inset
and
\begin_inset Formula $A\cap U=A$
\end_inset
.
\end_layout
\begin_layout Itemize
Idempotency:
\begin_inset Formula $A\cup A=A$
\end_inset
and
\begin_inset Formula $A\cap A=A$
\end_inset
.
\end_layout
\begin_layout Itemize
Cummutative:
\begin_inset Formula $A\cup B=B\cup A$
\end_inset
and
\begin_inset Formula $A\cap B=B\cap A$
\end_inset
.
\end_layout
\begin_layout Itemize
Associative:
\begin_inset Formula $A\cup(B\cup C)=(A\cup B)\cup C$
\end_inset
and
\begin_inset Formula $A\cap(B\cap C)=(A\cap B)\cap C$
\end_inset
.
\end_layout
\begin_layout Itemize
Distributive:
\begin_inset Formula $A\cup(B\cap C)=(A\cup B)\cap(B\cup C)$
\end_inset
and
\begin_inset Formula $A\cap(B\cup C)=(A\cap B)\cup(B\cap C)$
\end_inset
.
\end_layout
\begin_layout Itemize
Absorption:
\begin_inset Formula $A\cup(A\cap B)=A$
\end_inset
and
\begin_inset Formula $A\cap(A\cup B)=A$
\end_inset
.
\end_layout
\begin_layout Itemize
DeMorgan:
\begin_inset Formula $\overline{A\cup B}=\bar{A}\cap\bar{B}$
\end_inset
and
\begin_inset Formula $\overline{A\cap B}=\bar{A}\cup\bar{B}$
\end_inset
.
\end_layout
\begin_layout Itemize
Negation:
\begin_inset Formula $A\cup\bar{A}=U$
\end_inset
and
\begin_inset Formula $A\cap\bar{A}=\emptyset$
\end_inset
.
\end_layout
\begin_layout Itemize
Double negation:
\begin_inset Formula $\bar{\bar{A}}=A$
\end_inset
.
\end_layout
\begin_layout Subsection
Power set and partitions
\end_layout
\begin_layout Itemize
We define the
\emph on
power set
\emph default
of a set
\begin_inset Formula $A$
\end_inset
as the set of all subset of
\begin_inset Formula $A$
\end_inset
:
\begin_inset Formula $\mathcal{P}(A)=\{X:X\subseteq A\}$
\end_inset
.
The cardinality of such a set is:
\begin_inset Formula $\left|\mathcal{P}(A)\right|=2^{\left|A\right|}$
\end_inset
\end_layout
\begin_layout Itemize
We say a collection
\begin_inset Formula $\alpha=\{A_{i}\}$
\end_inset
of non-empty sets forms a
\emph on
partition
\emph default
of the set
\begin_inset Formula $A$
\end_inset
if and only if:
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $A_{i}\in\alpha\implies A_{i}\in\mathcal{P}(A)$
\end_inset
\end_layout
\begin_layout Itemize
the sets are pairwise disjoint, that is,
\begin_inset Formula $A_{i},A_{j}\in\alpha$
\end_inset
and
\begin_inset Formula $i\neq j$
\end_inset
\begin_inset Formula $\implies A_{i}\cap A_{j}=\emptyset$
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Formula $\underset{A_{i}\in\alpha}{\bigcup}A_{i}=A$
\end_inset
\end_layout
\end_deeper
\begin_layout Subsection
Cartesian product
\end_layout
\begin_layout Standard
The Cartesian product of two sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
, denoted
\begin_inset Formula $A\times B$
\end_inset
, is the set of all the
\emph on
ordered
\emph default
pairs such that the first element of the pair is an element of
\begin_inset Formula $A$
\end_inset
and the second is an element of
\begin_inset Formula $B$
\end_inset
.
More formally
\begin_inset Formula $A\times B=\{(a,b):a\in A\text{ and }b\in B\}$
\end_inset
whose cardinality is
\begin_inset Formula $|A\times B|=|A|\cdot|B|$
\end_inset
if
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
are finite.
\end_layout
\begin_layout Standard
We denote an
\emph on
n-fold
\emph default
Cartesian product over a single set
\begin_inset Formula $A^{n}=A\times A\times\dots\times A$
\end_inset
whose cardinality is
\begin_inset Formula $|A^{n}|=|A|^{n}$
\end_inset
if A is finite.
\end_layout
\begin_layout Section
Relations
\end_layout
\begin_layout Standard
An
\emph on
n-ary
\emph default
relation on sets
\begin_inset Formula $A_{1},\, A_{2},\,\dots,\, A_{n}$
\end_inset
is a subset of
\begin_inset Formula $A_{1}\times A_{2}\times\dots\times A_{n}$
\end_inset
.
\end_layout
\begin_layout Standard
A
\emph on
binary relation
\emph default
\begin_inset Formula $R$
\end_inset
on two sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
is a subset of the Cartesian product
\begin_inset Formula $A\times B.$
\end_inset
\end_layout
\begin_layout Subsection
Properties of binary relations
\end_layout
\begin_layout Itemize
A binary relation
\begin_inset Formula $R\subseteq A\times A$
\end_inset
is
\emph on
reflexive
\emph default
if
\begin_inset Formula $aRa$
\end_inset
for all
\begin_inset Formula $a\in A$
\end_inset
.
\end_layout
\begin_layout Itemize
A relation
\begin_inset Formula $R$
\end_inset
is
\emph on
symmetric
\emph default
if
\begin_inset Formula $aRb\implies bRa$
\end_inset
.
\end_layout
\begin_layout Itemize
A relation
\begin_inset Formula $R$
\end_inset
is
\emph on
transitive
\emph default
if
\begin_inset Formula $aRb\wedge bRc\implies aRc$
\end_inset
.
\end_layout
\begin_layout Itemize
A binary relation
\begin_inset Formula $R$
\end_inset
on a set
\begin_inset Formula $A$
\end_inset
is
\emph on
antisymmetric
\emph default
if
\begin_inset Formula $aRb\wedge bRa\implies a=b$
\end_inset
.
\end_layout
\begin_layout Standard
An example of relation that is neither symmetric nor antisymmetric is
\begin_inset Formula $x$
\end_inset
\begin_inset Quotes eld
\end_inset
divides
\begin_inset Quotes erd
\end_inset
\begin_inset Formula $y$
\end_inset
on
\begin_inset Formula $\mathbb{Z}$
\end_inset
: 6 divides 3 doesn't imply 3 divides 6; 3 divides -3 and -3 divides 3 doesn't
imply -3=3!
\end_layout
\begin_layout Subsection
Types of binary relations
\end_layout
\begin_layout Subsubsection
Equivalence relation
\end_layout
\begin_layout Standard
A binary relation that is reflexive, symmetric and transitive is an
\emph on
equivalence relation
\emph default
.
\end_layout
\begin_layout Standard
If
\begin_inset Formula $R$
\end_inset
is an equivalence relation on a set
\begin_inset Formula $A$
\end_inset
, then for
\begin_inset Formula $a\in A$
\end_inset
, the
\emph on
equivalence class
\emph default
of
\begin_inset Formula $a$
\end_inset
is the set
\begin_inset Formula $[a]=\{b\in A:\, aRb\}$
\end_inset
, that is, the set of all elements equivalent to
\begin_inset Formula $a$
\end_inset
.
\end_layout
\begin_layout Standard
The equivalence classes of any equivalence relation
\begin_inset Formula $R$
\end_inset
on a set
\begin_inset Formula $A$
\end_inset
form a partition of
\begin_inset Formula $A$
\end_inset
, and any partition of
\begin_inset Formula $A$
\end_inset
determines an equivalence relation on
\begin_inset Formula $A$
\end_inset
for which the sets in the partition are the equivalence classes.
\end_layout
\begin_layout Subsubsection
Partial order
\end_layout
\begin_layout Standard
A binary relation that is reflexive, antisymmetric and transitive is a
\emph on
partial order
\emph default
.
\end_layout
\begin_layout Standard
A set on which a partial order relation is defined is called a
\emph on
partially ordered set
\emph default
.
(poset)
\end_layout
\begin_layout Standard
In a poset
\begin_inset Formula $A$
\end_inset
, there may be no single
\begin_inset Quotes eld
\end_inset
maximum
\begin_inset Quotes erd
\end_inset
element
\begin_inset Formula $a$
\end_inset
such that
\begin_inset Formula $bRa$
\end_inset
for all
\begin_inset Formula $b\in A$
\end_inset
.
Instead, the set may contain several
\emph on
maximal
\emph default
elements
\begin_inset Formula $a$
\end_inset
such that for no
\begin_inset Formula $b\in A$
\end_inset
, where
\begin_inset Formula $b\neq a$
\end_inset
, is it the case that
\begin_inset Formula $aRb$
\end_inset
.
\end_layout
\begin_layout Subsubsection
Total relation
\end_layout
\begin_layout Standard
A binary relation
\begin_inset Formula $R$
\end_inset
on a set
\begin_inset Formula $A$
\end_inset
is a
\emph on
total relation
\emph default
if
\begin_inset Formula $\forall a,b\in A,\, aRb\vee bRa$
\end_inset
, that is, if every pairing of elements of
\begin_inset Formula $A$
\end_inset
is related by
\begin_inset Formula $R$
\end_inset
.
\end_layout
\begin_layout Subsubsection
Total order
\end_layout
\begin_layout Standard
A binary relation that is both a partial order and a total relation is a
\emph on
total order
\emph default
.
\end_layout
\begin_layout Section
Functions
\end_layout
\begin_layout Standard
Given two sets
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
, a function
\begin_inset Formula $f$
\end_inset
is a binary relation on
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
such that
\begin_inset Formula $\forall a\in A,\exists!b\in B:\,(a,b)\in f$
\end_inset
.
\end_layout
\begin_layout Standard
The set
\begin_inset Formula $A$
\end_inset
is called the
\emph on
domain
\emph default
of
\begin_inset Formula $f$
\end_inset
and the set
\begin_inset Formula $B$
\end_inset
in called the
\emph on
codomain
\emph default
of
\begin_inset Formula $f$
\end_inset
.
\end_layout
\begin_layout Standard
Intuitively
\begin_inset Formula $f$
\end_inset
assigns an element of
\begin_inset Formula $B$
\end_inset
to
\emph on
each
\emph default
element of
\begin_inset Formula $A$
\end_inset
.
No element of
\emph on
A
\emph default
is assigned two different elements of
\emph on
B
\emph default
, but the same element of
\emph on
B
\emph default
can be assigned to two different elements of
\emph on
A
\emph default
.
\end_layout
\begin_layout Standard
If
\begin_inset Formula $f:A\rightarrow B$
\end_inset
is a function the
\emph on
image
\emph default
of a set
\begin_inset Formula $A'\subseteq A$
\end_inset
under
\begin_inset Formula $f$
\end_inset
is defined by
\begin_inset Formula $f(A')=\{b\in B:\, b=f(a)\, for\, some\, a\in A'\}$
\end_inset
.