diff --git a/run.py b/run.py index a022dca..74ee585 100644 --- a/run.py +++ b/run.py @@ -8,7 +8,9 @@ from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler from scipy.sparse import hstack -import matplotlib.pyplot as plot +import matplotlib.pyplot as plt +import numpy as np +np.random.seed(1) # FUNCTION: Train the model and store it locally def create_model(): @@ -49,12 +51,37 @@ def create_model(): batch_size=128, hidden_layer_sizes=(256), learning_rate='adaptive', - max_iter=20, verbose=True, ) - # Fit the model - model.fit(features_train, y_train) + # The number of epochs to run + N_EPOCHS = 10 + N_CLASSES = np.unique(y_train) + + scores_train = [] + scores_test = [] + + # EPOCH + epoch = 0 + while epoch < N_EPOCHS: + print('Epoch: ', epoch) + model.partial_fit(features_train, y_train, classes=N_CLASSES) + + # SCORE TRAIN + scores_train.append(model.score(features_train, y_train)) + + # SCORE TEST + scores_test.append(model.score(features_test, y_test)) + + epoch += 1 + + # Plot accuracy over iterations + plt.plot(scores_train, color='green', alpha=0.8, label='Train') + plt.plot(scores_test, color='magenta', alpha=0.8, label='Test') + plt.title("Accuracy over epochs", fontsize=14) + plt.xlabel('Epochs') + plt.legend(loc='upper left') + plt.show() # Predicting the test set results predictions = model.predict(features_test) @@ -70,9 +97,6 @@ def create_model(): # Print the model accuracy print("Accuracy: ", model.score(features_test,y_test) * 100) - # TODO: Accuracy over each iteration - # TODO: Validation over each iteration - # Store the model in storage joblib.dump(model,"./models/model.pkl") # Store the vectorizer in storage