-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions_transport.ncl
504 lines (421 loc) · 13.3 KB
/
functions_transport.ncl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
; transport_funcs.ncl
; functions for computing implied ocean, freshwater, atmospheric transports
; written by Mark Stevens March 2001
;***************************************************************************
function ocean_mask (oroi[*][*]:numeric)
; creates mask file for the pacific, atlantic and indian ocean basins
; oro: orography data array (lat,lon)
; assumes that lat and lon are attached to oro as coordinates,
; and oro has values ocean: 0, land: 1, seaice: 2
begin
if (typeof(oroi) .eq."double") then
oro = dble2flt(oroi)
else
oro = oroi
end if
lat = oro&lat
lon = oro&lon
nlat = dimsizes(lat)
nlon = dimsizes(lon)
; make 2D mask array for ocean grid points
basins_mask = oro
; assignFillValue(basins_mask,basins_mask) ; since oro has no _FillValue
basins_mask = basins_mask@_FillValue
basins_mask@long_name = "(1)pacific (2)atlantic (3)indian"
; Pacific ocean basin
do j = 0, nlat-1
do i = 0, nlon-1
if (oro(j,i).lt.0.5) then
if ((lon(i).gt.100.0 .and. lon(i).lt.260.0 .and. \
lat(j).lt. 65.0 .and. lat(j).gt. 15.0) .or. \
(lon(i).gt.100.0 .and. lon(i).lt.275.0 .and. \
lat(j).le. 15.0 .and. lat(j).gt. 10.0) .or. \
(lon(i).gt.100.0 .and. lon(i).lt.290.0 .and. \
lat(j).le. 10.0 .and. lat(j).gt. -5.0) .or. \
(lon(i).ge.130.0 .and. lon(i).le.290.0 .and. \
lat(j).le. -5.0)) then
basins_mask(j,i) = 1 ; pacific
end if
end if
end do
end do
; Atlantic ocean basin
do j = 0, nlat-1
do i = 0, nlon-1
if (oro(j,i).lt.0.5) then
if ((lon(i).gt.290.0 .and. lon(i).lt.360.0 .and. \
lat(j).le. 65.0 .and. lat(j).gt. 45.0) .or. \
(lon(i).ge. 0.0 .and. lon(i).lt. 10.0 .and. \
lat(j).le. 65.0 .and. lat(j).gt. 45.0) .or. \
(lon(i).gt.260.0 .and. lon(i).lt.360.0 .and. \
lat(j).le. 45.0 .and. lat(j).gt. 40.0) .or. \
(lon(i).gt.260.0 .and. lon(i).lt.355.0 .and. \
lat(j).le. 40.0 .and. lat(j).gt. 15.0) .or. \
(lon(i).gt.275.0 .and. lon(i).lt.360.0 .and. \
lat(j).le. 15.0 .and. lat(j).gt. 10.0) .or. \
(lon(i).ge. 0.0 .and. lon(i).lt. 25.0 .and. \
lat(j).le. 15.0 .and. lat(j).gt. 10.0) .or. \
(lon(i).gt.290.0 .and. lon(i).lt.360.0 .and. \
lat(j).le. 10.0) .or. \
(lon(i).ge. 0.0 .and. lon(i).lt. 25.0 .and. \
lat(j).le. 10.0)) then
basins_mask(j,i) = 2 ; atlantic
end if
end if
end do
end do
; Indian ocean basin
do j = 0, nlat-1
do i = 0, nlon-1
if (oro(j,i).lt.0.5) then
if ((lon(i).gt.60.0 .and. lon(i).lt.100.0 .and. \
lat(j).lt. 25.0 .and. lat(j).gt. 20.0) .or. \
(lon(i).gt. 45.0 .and. lon(i).lt.100.0 .and. \
lat(j).le. 20.0 .and. lat(j).gt. 0.0) .or. \
(lon(i).ge. 25.0 .and. lon(i).lt.100.0 .and. \
lat(j).le. 0.0 .and. lat(j).gt. -5.0) .or. \
(lon(i).ge. 25.0 .and. lon(i).le.130.0 .and. \
lat(j).le. -5.0)) then
basins_mask(j,i) = 3 ; indian
end if
end if
end do
end do
return (basins_mask) ; returns 2D mask array (lat,lon)
end
;*****************************************************************************
; calculate the ocean heat transport for models
function oht_model (gwi[*]:numeric,oroi[*][*]:numeric,fsnsi[*][*]:numeric, \
flnsi[*][*]:numeric,shfli[*][*]:numeric,lhfli[*][*]:numeric)
; gw : gaussian weights (lat)
; oro : orography data array (lat,lon)
; requires the lat and lon are attached coordinates of oro
; and that oro and the following variables are 2D arrays (lat,lon).
; fsns: net shortwave solar flux at surface
; flns: net longwave solar flux at surface
; shfl: sensible heat flux at surface
; lhfl: latent heat flux at surface
begin
if (typeof(gwi).eq."double") then
gw = dble2flt(gwi)
else
gw = gwi
end if
if (typeof(oroi).eq."double") then
oro = dble2flt(oroi)
else
oro = oroi
end if
if (typeof(fsnsi).eq."double") then
fsns = dble2flt(fsnsi)
else
fsns = fsnsi
end if
if (typeof(flnsi).eq."double") then
flns = dble2flt(flnsi)
else
flns = flnsi
end if
if (typeof(shfli).eq."double") then
shfl = dble2flt(shfli)
else
shfl = shfli
end if
if (typeof(lhfli).eq."double") then
lhfl = dble2flt(lhfli)
else
lhfl = lhfli
end if
; constants
pi = 3.14159265
re = 6.371e6 ; radius of earth
coef = re^2/1.e15 ; scaled by PW
heat_storage = 0.3 ; W/m^2 adjustment for ocean heat storage
nlat = dimsizes(oro(:,0))
nlon = dimsizes(oro(0,:))
dlon = 2.*pi/nlon ; dlon in radians
lat = oro&lat
lat&lat = lat
i65n = ind(lat.eq.lat({65}))
i65s = ind(lat.eq.lat({-65}))
; get the mask for the ocean basins
basins_mask = ocean_mask(oro) ; returns 2D array(lat,lon)
; compute net surface energy flux
netflux = fsns
netflux = (/fsns-flns-shfl-lhfl-heat_storage/)
; compute the net flux for the basins
netflux_basin = new((/3,nlat,nlon/),float)
netflux_basin(0,:,:) = mask(netflux,basins_mask,1) ; pacific
netflux_basin(1,:,:) = mask(netflux,basins_mask,2) ; atlantic
netflux_basin(2,:,:) = mask(netflux,basins_mask,3) ; indian
; sum flux over the longitudes in each basin
heatflux = new((/3,nlat/),float)
heatflux = dim_sum(netflux_basin)
; compute implied heat transport in each basin
oft = new((/4,nlat/),float)
oft!0 = "basin number" ; 0:pacific, 1:atlantic, 2:indian, 3:total
oft!1 = "lat"
oft&lat = lat
do n = 0, 2
do j = i65n, i65s, 1 ;start sum at most northern point
oft(n,j) = -coef*dlon*sum(heatflux(n,j:i65n)*gw(j:i65n))
end do
end do
; compute total implied ocean heat transport at each latitude
; as the sum over the basins at that latitude
do j = i65s, i65n
oft(3,j) = sum(oft(:,j))
end do
return(oft) ; 2D array(4,lat)
end
;**************************************************************************
; calculate the heat transport for the entire surface
function ht_surface (gwi[*]:numeric,oroi[*][*]:numeric,fsnsi[*][*]:numeric, \
flnsi[*][*]:numeric,shfli[*][*]:numeric,lhfli[*][*]:numeric,adjust:logical)
; gw : gaussian weights (lat)
; oro : orography
; fsns: net shortwave solar flux at surface
; flns: net longwave solar flux at surface
; shfl: sensible heat flux at surface
; lhfl: latent heat flux at surface
; adjust: logical switch for applying adjustment
begin
if (typeof(gwi).eq."double") then
gw = dble2flt(gwi)
else
gw = gwi
end if
if (typeof(oroi).eq."double") then
oro = dble2flt(oroi)
else
oro = oroi
end if
if (typeof(fsnsi).eq."double") then
fsns = dble2flt(fsnsi)
else
fsns = fsnsi
end if
if (typeof(flnsi).eq."double") then
flns = dble2flt(flnsi)
else
flns = flnsi
end if
if (typeof(shfli).eq."double") then
shfl = dble2flt(shfli)
else
shfl = shfli
end if
if (typeof(lhfli).eq."double") then
lhfl = dble2flt(lhfli)
else
lhfl = lhfli
end if
; constants
pi = 3.14159265
re = 6.371e6 ; radius of earth
coef = re^2/1.e15 ; scaled by PW
heat_storage = 0.3 ; W/m^2 adjustment for ocean heat storage
nlat = dimsizes(oro(:,0))
nlon = dimsizes(oro(0,:))
dlon = 2.*pi/nlon ; dlon in radians
lat = oro&lat
lat&lat = lat
; compute net surface energy flux
tmp = fsns
tmp = (/fsns-flns-shfl-lhfl/) ; (lat,lon)
; zonally average entire surface
heatflux = dim_avg(tmp) ; (lat)
; global mean
if (adjust) then
gbl = sum(heatflux*gw)/sum(gw)
end if
ht = new(nlat,float)
ht!0 = "lat"
ht&lat = lat
do j = nlat-1,0, 1 ;start sum at most northern point
if (adjust) then
ht(j) = -coef*2.*pi*sum((heatflux(j:nlat-1)-gbl)*gw(j:nlat-1))
else
ht(j) = -coef*2.*pi*sum(heatflux(j:nlat-1)*gw(j:nlat-1))
end if
end do
return(ht) ; 1D array(lat)
end
;***************************************************************************
; calculate the ocean freshwater transport for models
function oft_model (gwi[*]:numeric,oroi[*][*]:numeric,precci[*][*]:numeric, \
precli[*][*]:numeric,qflxi[*][*]:numeric)
; gw : gaussian weights (lat)
; oro : orography data array (lat,lon)
; requires the lat and lon are attached coordinates of oro
; and that oro and the following variables are 2D arrays (lat,lon).
; precc : convective precipitation (m/s)
; precl : large-scale precipitation (m/s)
; qflx : surface water flux (kg/s)
begin
if (typeof(gwi).eq."double") then
gw = dble2flt(gwi)
else
gw = gwi
end if
if (typeof(oroi).eq."double") then
oro = dble2flt(oroi)
else
oro = oroi
end if
if (typeof(precci).eq."double") then
precc = dble2flt(precci)
else
precc = precci
end if
if (typeof(precli).eq."double") then
precl = dble2flt(precli)
else
precl = precli
end if
if (typeof(qflxi).eq."double") then
qflx = dble2flt(qflxi)
else
qflx = qflxi
end if
; constants
pi = 3.14159265
re = 6.371e6 ; radius of earth
coef = re^2/1.e6 ; scaled for Sverdrups
nlat = dimsizes(oro(:,0))
nlon = dimsizes(oro(0,:))
dlon = 2.*pi/nlon ; dlon in radians
lat = oro&lat
lat&lat = lat
i65n = ind(lat.eq.lat({65}))
i65s = ind(lat.eq.lat({-65}))
; get the mask for the ocean basins
basins_mask = ocean_mask(oro) ; returns 2D array(lat,lon)
; compute net surface freshwater flux
netflux = precc
netflux = (/(precc+precl)-qflx/1000./) ; units of m^3/s
; compute the net flux for the basins
netflux_basin = new((/3,nlat,nlon/),float)
netflux_basin(0,:,:) = mask(netflux,basins_mask,1) ; pacific
netflux_basin(1,:,:) = mask(netflux,basins_mask,2) ; atlantic
netflux_basin(2,:,:) = mask(netflux,basins_mask,3) ; indian
; sum flux over the longitudes in each basin
heatflux = new((/3,nlat/),float)
heatflux = dim_sum(netflux_basin)
; compute implied freshwater transport in each basin
oft = new((/4,nlat/),float)
oft!0 = "basin number" ; 0:pacific, 1:atlantic, 2:indian, 3:total
oft!1 = "lat"
oft&lat = lat
do n = 0, 2
do j = i65n, i65s, 1 ;start sum at most northern point
oft(n,j) = -coef*dlon*sum(heatflux(n,j:i65n)*gw(j:i65n))
end do
end do
; compute total implied ocean freshwater transport at each latitude
; as the sum over the basins at that latitude
do j = i65s, i65n
oft(3,j) = sum(oft(:,j))
end do
return(oft) ; 2D array(4,lat)
end
;***************************************************************************
; calculate the ocean freshwater transport for ecmwf era15 data
function oft_ecmwf (gwi[*]:numeric,oroi[*][*]:numeric,epi[*][*]:numeric)
; gw : gaussian weights (lat)
; oro : orography data array (lat,lon)
; requires the lat and lon are attached coordinates of oro
; and that oro and the following variables are 2D arrays (lat,lon).
; ep : evaporation-precipitation (lat,lon) units:mm/day
begin
if (typeof(gwi).eq."double") then
gw = dble2flt(gwi)
else
gw = gwi
end if
if (typeof(oroi).eq."double") then
oro = dble2flt(oroi)
else
oro = oroi
end if
if (typeof(epi).eq."double") then
ep = dble2flt(epi)
else
ep = epi
end if
; constants
pi = 3.14159265
re = 6.371e6 ; radius of earth
coef = re^2/1.e6 ; scaled for Sverdrups
nlat = dimsizes(oro(:,0))
nlon = dimsizes(oro(0,:))
dlon = 2.*pi/nlon ; dlon in radians
lat = oro&lat
lat&lat = lat
i65n = ind(lat.eq.lat({65}))
i65s = ind(lat.eq.lat({-65}))
; get the mask for the ocean basins
basins_mask = ocean_mask(oro) ; returns 2D array(lat,lon)
; compute net surface freshwater flux
netflux = -ep/8.64e7 ; convert from mm/day to m/s
; compute the net flux for the basins
netflux_basin = new((/3,nlat,nlon/),float)
netflux_basin(0,:,:) = mask(netflux,basins_mask,1) ; pacific
netflux_basin(1,:,:) = mask(netflux,basins_mask,2) ; atlantic
netflux_basin(2,:,:) = mask(netflux,basins_mask,3) ; indian
; sum flux over the longitudes in each basin
heatflux = new((/3,nlat/),float)
heatflux = dim_sum(netflux_basin)
; compute implied freshwater transport in each basin
oft = new((/4,nlat/),float)
oft!0 = "basin number" ; 0:pacific, 1:atlantic, 2:indian, 3:total
oft!1 = "lat"
oft&lat = lat
do n = 0, 2
do j = i65n, i65s, 1 ;start sum at most northern point
oft(n,j) = -coef*dlon*sum(heatflux(n,j:i65n)*gw(j:i65n))
end do
end do
; compute total implied ocean freshwater transport at each latitude
; as the sum over the basins at that latitude
do j = i65s, i65n
oft(3,j) = sum(oft(:,j))
end do
return(oft) ; 2D array(4,lat)
end
;***************************************************************************
; calculate the required heat transport from data at TOA
function rht_model (gwi[*]:numeric,restoai[*][*]:numeric)
; gw : gaussian weights (lat)
; restoa : residual energy at TOA = fsntoa-flut
begin
if (typeof(gwi).eq."double") then
gw = dble2flt(gwi)
else
gw = gwi
end if
if (typeof(restoai).eq."double") then
restoa = dble2flt(restoai)
else
restoa = restoai
end if
; constants
pi = 3.14159265
re = 6.371e6 ; radius of earth
coef = re^2/1.e15 ; scaled for PW
nlat = dimsizes(restoa(:,0))
nlon = dimsizes(restoa(0,:))
dlon = 2.*pi/nlon ; dlon in radians
lat = restoa&lat
lat&lat = lat
; sum flux over the longitudes
heatflux = dim_sum(restoa)
; compute required heat transport
rht = new(nlat,float)
rht!0 = "lat"
rht&lat = lat
do j = nlat-1, 0, 1 ;start sum at most northern point
rht(j) = -coef*dlon*sum(heatflux(j:nlat-1)*gw(j:nlat-1))
end do
return(rht) ; 1D array(nlat)
end