forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Task035_ISBI_MSLesionSegmentationChallenge.py
162 lines (127 loc) · 6.82 KB
/
Task035_ISBI_MSLesionSegmentationChallenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from collections import OrderedDict
import numpy as np
import SimpleITK as sitk
import multiprocessing
from batchgenerators.utilities.file_and_folder_operations import *
def convert_to_nii_gz(filename):
f = sitk.ReadImage(filename)
sitk.WriteImage(f, os.path.splitext(filename)[0] + ".nii.gz")
os.remove(filename)
def convert_for_submission(source_dir, target_dir):
files = subfiles(source_dir, suffix=".nii.gz", join=False)
maybe_mkdir_p(target_dir)
for f in files:
splitted = f.split("__")
case_id = int(splitted[1])
timestep = int(splitted[2][:-7])
t = join(target_dir, "test%02d_%02d_nnUNet.nii" % (case_id, timestep))
img = sitk.ReadImage(join(source_dir, f))
sitk.WriteImage(img, t)
if __name__ == "__main__":
# convert to nifti.gz
dirs = ['/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTr',
'/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs',
'/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/labelsTr']
p = multiprocessing.Pool(3)
for d in dirs:
nii_files = subfiles(d, suffix='.nii')
p.map(convert_to_nii_gz, nii_files)
p.close()
p.join()
def rename_files(folder):
all_files = subfiles(folder, join=False)
# there are max 14 patients per folder, starting with 1
for patientid in range(1, 15):
# there are certainly no more than 10 time steps per patient, starting with 1
for t in range(1, 10):
patient_files = [i for i in all_files if i.find("%02.0d_%02.0d_" % (patientid, t)) != -1]
if not len(patient_files) == 4:
continue
flair_file = [i for i in patient_files if i.endswith("_flair_pp.nii.gz")][0]
mprage_file = [i for i in patient_files if i.endswith("_mprage_pp.nii.gz")][0]
pd_file = [i for i in patient_files if i.endswith("_pd_pp.nii.gz")][0]
t2_file = [i for i in patient_files if i.endswith("_t2_pp.nii.gz")][0]
os.rename(join(folder, flair_file), join(folder, "case__%02.0d__%02.0d_0000.nii.gz" % (patientid, t)))
os.rename(join(folder, mprage_file), join(folder, "case__%02.0d__%02.0d_0001.nii.gz" % (patientid, t)))
os.rename(join(folder, pd_file), join(folder, "case__%02.0d__%02.0d_0002.nii.gz" % (patientid, t)))
os.rename(join(folder, t2_file), join(folder, "case__%02.0d__%02.0d_0003.nii.gz" % (patientid, t)))
for d in dirs[:-1]:
rename_files(d)
# now we have to deal with the training masks, we do it the quick and dirty way here by just creating copies of the
# training data
train_folder = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTr'
for patientid in range(1, 6):
for t in range(1, 6):
fnames_original = subfiles(train_folder, prefix="case__%02.0d__%02.0d" % (patientid, t), suffix=".nii.gz", sort=True)
for f in fnames_original:
for mask in [1, 2]:
fname_target = f[:-12] + "__mask%d" % mask + f[-12:]
shutil.copy(f, fname_target)
os.remove(f)
labels_folder = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/labelsTr'
for patientid in range(1, 6):
for t in range(1, 6):
for mask in [1, 2]:
f = join(labels_folder, "training%02d_%02d_mask%d.nii.gz" % (patientid, t, mask))
if isfile(f):
os.rename(f, join(labels_folder, "case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask)))
tr_files = []
for patientid in range(1, 6):
for t in range(1, 6):
for mask in [1, 2]:
if isfile(join(labels_folder, "case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask))):
tr_files.append("case__%02.0d__%02.0d__mask%d.nii.gz" % (patientid, t, mask))
ts_files = []
for patientid in range(1, 20):
for t in range(1, 20):
if isfile(join("/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs",
"case__%02.0d__%02.0d_0000.nii.gz" % (patientid, t))):
ts_files.append("case__%02.0d__%02.0d.nii.gz" % (patientid, t))
out_base = '/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/'
json_dict = OrderedDict()
json_dict['name'] = "ISBI_Lesion_Segmentation_Challenge_2015"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see challenge website"
json_dict['licence'] = "see challenge website"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "flair",
"1": "mprage",
"2": "pd",
"3": "t2"
}
json_dict['labels'] = {
"0": "background",
"1": "lesion"
}
json_dict['numTraining'] = len(subfiles(labels_folder))
json_dict['numTest'] = len(subfiles('/media/fabian/My Book/MedicalDecathlon/Task035_ISBILesionSegmentation/imagesTs')) // 4
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i[:-7], "label": "./labelsTr/%s.nii.gz" % i[:-7]} for i in
tr_files]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i[:-7] for i in ts_files]
save_json(json_dict, join(out_base, "dataset.json"))
case_identifiers = np.unique([i[:-12] for i in subfiles("/media/fabian/My Book/MedicalDecathlon/MedicalDecathlon_raw_splitted/Task035_ISBILesionSegmentation/imagesTr", suffix='.nii.gz', join=False)])
splits = []
for f in range(5):
cases = [i for i in range(1, 6) if i != f+1]
splits.append(OrderedDict())
splits[-1]['val'] = np.array([i for i in case_identifiers if i.startswith("case__%02d__" % (f + 1))])
remaining = [i for i in case_identifiers if i not in splits[-1]['val']]
splits[-1]['train'] = np.array(remaining)
maybe_mkdir_p("/media/fabian/nnunet/Task035_ISBILesionSegmentation")
save_pickle(splits, join("/media/fabian/nnunet/Task035_ISBILesionSegmentation", "splits_final.pkl"))