forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Task043_BraTS_2019.py
164 lines (137 loc) · 5.93 KB
/
Task043_BraTS_2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from collections import OrderedDict
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.paths import nnUNet_raw_data
import SimpleITK as sitk
import shutil
def copy_BraTS_segmentation_and_convert_labels(in_file, out_file):
# use this for segmentation only!!!
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3
img = sitk.ReadImage(in_file)
img_npy = sitk.GetArrayFromImage(img)
uniques = np.unique(img_npy)
for u in uniques:
if u not in [0, 1, 2, 4]:
raise RuntimeError('unexpected label')
seg_new = np.zeros_like(img_npy)
seg_new[img_npy == 4] = 3
seg_new[img_npy == 2] = 1
seg_new[img_npy == 1] = 2
img_corr = sitk.GetImageFromArray(seg_new)
img_corr.CopyInformation(img)
sitk.WriteImage(img_corr, out_file)
if __name__ == "__main__":
"""
REMEMBER TO CONVERT LABELS BACK TO BRATS CONVENTION AFTER PREDICTION!
"""
task_name = "Task043_BraTS2019"
downloaded_data_dir = "/home/sdp/MLPERF/Brats2019_DATA/MICCAI_BraTS_2019_Data_Training"
target_base = join(nnUNet_raw_data, task_name)
target_imagesTr = join(target_base, "imagesTr")
target_imagesVal = join(target_base, "imagesVal")
target_imagesTs = join(target_base, "imagesTs")
target_labelsTr = join(target_base, "labelsTr")
maybe_mkdir_p(target_imagesTr)
maybe_mkdir_p(target_imagesVal)
maybe_mkdir_p(target_imagesTs)
maybe_mkdir_p(target_labelsTr)
patient_names = []
for tpe in ["HGG", "LGG"]:
cur = join(downloaded_data_dir, tpe)
for p in subdirs(cur, join=False):
patdir = join(cur, p)
patient_name = tpe + "__" + p
patient_names.append(patient_name)
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
seg = join(patdir, p + "_seg.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
isfile(seg)
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTr, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTr, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTr, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTr, patient_name + "_0003.nii.gz"))
copy_BraTS_segmentation_and_convert_labels(seg, join(target_labelsTr, patient_name + ".nii.gz"))
json_dict = OrderedDict()
json_dict['name'] = "BraTS2019"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see BraTS2019"
json_dict['licence'] = "see BraTS2019 license"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "T1",
"1": "T1ce",
"2": "T2",
"3": "FLAIR"
}
json_dict['labels'] = {
"0": "background",
"1": "edema",
"2": "non-enhancing",
"3": "enhancing",
}
json_dict['numTraining'] = len(patient_names)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
patient_names]
json_dict['test'] = []
save_json(json_dict, join(target_base, "dataset.json"))
downloaded_data_dir = "/home/sdp/MLPERF/Brats2019_DATA/MICCAI_BraTS_2019_Data_Validation"
for p in subdirs(downloaded_data_dir, join=False):
patdir = join(downloaded_data_dir, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesVal, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesVal, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesVal, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesVal, patient_name + "_0003.nii.gz"))
"""
#I dont have the testing data
downloaded_data_dir = "/home/fabian/Downloads/BraTS2018_train_val_test_data/MICCAI_BraTS_2018_Data_Testing_FIsensee"
for p in subdirs(downloaded_data_dir, join=False):
patdir = join(downloaded_data_dir, p)
patient_name = p
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTs, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTs, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTs, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTs, patient_name + "_0003.nii.gz"))"""