forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask114_heart_MNMs.py
259 lines (206 loc) · 11.4 KB
/
Task114_heart_MNMs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from batchgenerators.utilities.file_and_folder_operations import *
import shutil
import numpy as np
from numpy.random.mtrand import RandomState
import subprocess
from multiprocessing import pool
import pandas as pd
def get_mnms_data(data_root):
files_raw = []
files_gt = []
for r, dirs, files in os.walk(data_root):
for f in files:
if f.endswith('nii.gz'):
file_path = os.path.join(r, f)
if '_gt' in f:
files_gt.append(file_path)
else:
files_raw.append(file_path)
return files_raw, files_gt
def generate_filename_for_nnunet(pat_id, ts, pat_folder=None, add_zeros=False, vendor=None, centre=None, mode='mnms',
data_format='nii.gz'):
if not vendor or not centre:
if add_zeros:
filename = "{}_{}_0000.{}".format(pat_id, str(ts).zfill(4), data_format)
else:
filename = "{}_{}.{}".format(pat_id, str(ts).zfill(4), data_format)
else:
if mode == 'mnms':
if add_zeros:
filename = "{}_{}_{}_{}_0000.{}".format(pat_id, str(ts).zfill(4), vendor, centre, data_format)
else:
filename = "{}_{}_{}_{}.{}".format(pat_id, str(ts).zfill(4), vendor, centre, data_format)
else:
if add_zeros:
filename = "{}_{}_{}_{}_0000.{}".format(vendor, centre, pat_id, str(ts).zfill(4), data_format)
else:
filename = "{}_{}_{}_{}.{}".format(vendor, centre, pat_id, str(ts).zfill(4), data_format)
if pat_folder:
filename = os.path.join(pat_folder, filename)
return filename
def select_annotated_frames_mms(data_folder, out_folder, add_zeros=False, mode='mnms', df_path="/media/full/tera2/data/challenges/mms/Training-corrected_original/M&Ms Dataset Information.xlsx"):
table = pd.read_excel(df_path, index_col='External code')
for idx in table.index:
ed = table.loc[idx, 'ED']
es = table.loc[idx, 'ES']
vendor = table.loc[idx, 'Vendor']
centre = table.loc[idx, 'Centre']
if vendor != "C":
# generate old filename (w/o vendor and centre)
filename_ed_original = generate_filename_for_nnunet(pat_id=idx, ts=ed, pat_folder=data_folder,
vendor=None, centre=None, add_zeros=False)
filename_es_original = generate_filename_for_nnunet(pat_id=idx, ts=es, pat_folder=data_folder,
vendor=None, centre=None, add_zeros=False)
# generate new filename with vendor and centre
filename_ed = generate_filename_for_nnunet(pat_id=idx, ts=ed, pat_folder=out_folder,
vendor=vendor, centre=centre, add_zeros=add_zeros, mode=mode)
filename_es = generate_filename_for_nnunet(pat_id=idx, ts=es, pat_folder=out_folder,
vendor=vendor, centre=centre, add_zeros=add_zeros, mode=mode)
shutil.copy(filename_ed_original, filename_ed)
shutil.copy(filename_es_original, filename_es)
def create_custom_splits_for_experiments(task_path):
data_keys = [i[:-4] for i in
subfiles(os.path.join(task_path, "nnUNetData_plans_v2.1_2D_stage0"),
join=False, suffix='npz')]
existing_splits = os.path.join(task_path, "splits_final.pkl")
splits = load_pickle(existing_splits)
splits = splits[:5] # discard old changes
unique_a_only = np.unique([i.split('_')[0] for i in data_keys if i.find('_A_') != -1])
unique_b_only = np.unique([i.split('_')[0] for i in data_keys if i.find('_B_') != -1])
num_train_a = int(np.round(0.8 * len(unique_a_only)))
num_train_b = int(np.round(0.8 * len(unique_b_only)))
p = RandomState(1234)
idx_a_train = p.choice(len(unique_a_only), num_train_a, replace=False)
idx_b_train = p.choice(len(unique_b_only), num_train_b, replace=False)
identifiers_a_train = [unique_a_only[i] for i in idx_a_train]
identifiers_b_train = [unique_b_only[i] for i in idx_b_train]
identifiers_a_val = [i for i in unique_a_only if i not in identifiers_a_train]
identifiers_b_val = [i for i in unique_b_only if i not in identifiers_b_train]
# fold 5 will be train on a and eval on val sets of a and b
splits.append({'train': [i for i in data_keys if i.split("_")[0] in identifiers_a_train],
'val': [i for i in data_keys if i.split("_")[0] in identifiers_a_val] + [i for i in data_keys if
i.split("_")[
0] in identifiers_b_val]})
# fold 6 will be train on b and eval on val sets of a and b
splits.append({'train': [i for i in data_keys if i.split("_")[0] in identifiers_b_train],
'val': [i for i in data_keys if i.split("_")[0] in identifiers_a_val] + [i for i in data_keys if
i.split("_")[
0] in identifiers_b_val]})
# fold 7 train on both, eval on both
splits.append({'train': [i for i in data_keys if i.split("_")[0] in identifiers_b_train] + [i for i in data_keys if i.split("_")[0] in identifiers_a_train],
'val': [i for i in data_keys if i.split("_")[0] in identifiers_a_val] + [i for i in data_keys if
i.split("_")[
0] in identifiers_b_val]})
save_pickle(splits, existing_splits)
def split_4d_nii(nii_path, split_folder, pat_name=None, add_zeros=False):
# create temporary folder in which the 3d+t file will be split into many 3d files
temp_base = os.path.dirname(nii_path)
temp_location = os.path.join(temp_base, 'tmp')
if not os.path.isdir(temp_location):
os.mkdir(temp_location)
os.chdir(temp_location)
if not os.path.isdir(split_folder):
os.mkdir(split_folder)
_ = subprocess.call(['fslsplit', nii_path])
# rename files so that the patient's ID is in the filename
file_list = [f for f in os.listdir(temp_location) if os.path.isfile(f)]
file_list = sorted(file_list)
if not pat_name:
pat_name = os.path.basename(os.path.dirname(nii_path))
for ts, temp_file in enumerate(file_list):
# get time
time_step = temp_file.split('.')[0][3:]
# make sure the time step is a number. Otherwise trust in pythons sort algorithm
try:
int(time_step)
except:
time_step = ts
# change filename AND location -> move files
if add_zeros:
new_file_name = '{}_{}_0000.nii.gz'.format(pat_name, time_step)
else:
new_file_name = '{}_{}.nii.gz'.format(pat_name, time_step)
os.rename(os.path.join(temp_location, temp_file),
os.path.join(split_folder, new_file_name))
os.rmdir(temp_location)
def split_4d_parallel(args):
nii_path, split_folder, pat_name = args
split_4d_nii(nii_path, split_folder, pat_name)
def split_4d_for_all_pat(files_paths, split_folder):
p = pool.Pool(8)
p.map(split_4d_parallel,
zip(files_paths, [split_folder] * len(files_paths), [None] * len(files_paths)))
if __name__ == "__main__":
task_name = "Task114_heart_MNMs"
train_dir = "/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/nnUnet_raw/nnUNet_raw_data/{}/imagesTr".format(task_name)
test_dir = "/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/nnUnet_raw/nnUNet_raw_data/{}/imagesTs".format(task_name)
#out_dir='/media/full/tera2/output_nnUNet/preprocessed_data/Task114_heart_mnms'
out_dir='/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/tmp'
# train
all_train_files = [os.path.join(train_dir, x) for x in os.listdir(train_dir)]
# test
all_test_files = [os.path.join(test_dir, x) for x in os.listdir(test_dir)]
data_root = '/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/data/challenges/mms/Training-corrected_original/Labeled'
files_raw, files_gt = get_mnms_data(data_root=data_root)
split_path_raw ='/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/data/challenges/mms/temp_split_raw'
split_path_gt ='/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/data/challenges/mms/temp_split_gt'
maybe_mkdir_p(split_path_raw)
maybe_mkdir_p(split_path_gt)
split_4d_for_all_pat(files_raw, split_path_raw)
split_4d_for_all_pat(files_gt, split_path_gt)
out_dir = '/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/nnUnet_raw/nnUNet_raw_data/{}/'.format(task_name)
maybe_mkdir_p(join(out_dir, "imagesTr"))
maybe_mkdir_p(join(out_dir, "imagesTs"))
maybe_mkdir_p(join(out_dir, "labelsTr"))
imagesTr_path = os.path.join(out_dir, "imagesTr")
labelsTr_path = os.path.join(out_dir, "labelsTr")
select_annotated_frames_mms(split_path_raw, imagesTr_path, add_zeros=True)
select_annotated_frames_mms(split_path_gt, labelsTr_path, add_zeros=False)
labelsTr = subfiles(labelsTr_path)
json_dict = OrderedDict()
json_dict['name'] = "M&Ms"
json_dict['description'] = "short axis cardiac cine MRI segmentation"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "Campello, Víctor M. et al.: Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation. In preparation."
json_dict['licence'] = "see M&Ms challenge"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "MRI",
}
# labels differ for ACDC challenge
json_dict['labels'] = {
"0": "background",
"1": "LVBP",
"2": "LVM",
"3": "RV"
}
json_dict['numTraining'] = len(labelsTr)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s" % i.split("/")[-1], "label": "./labelsTr/%s" % i.split("/")[-1]} for i in
labelsTr]
json_dict['test'] = []
save_json(json_dict, os.path.join(out_dir, "dataset.json"))
# then preprocess data and plan training.
# run in terminal
# > nnUNet_plan_and_preprocess -t <TaskID> --verify_dataset_integrity
# start training and stop it immediately to get a split.pkl file
# > nnUNet_train 2d nnUNetTrainerV2_MMS <TaskID> 0
#
# then create custom splits as used for the final M&Ms submission
#
split_file_path = '/media/full/97d8d6e1-1aa1-4761-9dd1-fc6a62cf6264/output_nnUNet/preprocessed_data/{}/'.format(task_name)
create_custom_splits_for_experiments(split_file_path)