forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask115_COVIDSegChallenge.py
344 lines (294 loc) · 14.7 KB
/
Task115_COVIDSegChallenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import subprocess
import SimpleITK as sitk
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.utils import generate_dataset_json
from nnunet.paths import nnUNet_raw_data
from nnunet.paths import preprocessing_output_dir
from nnunet.utilities.task_name_id_conversion import convert_id_to_task_name
def increase_batch_size(plans_file: str, save_as: str, bs_factor: int):
a = load_pickle(plans_file)
stages = list(a['plans_per_stage'].keys())
for s in stages:
a['plans_per_stage'][s]['batch_size'] *= bs_factor
save_pickle(a, save_as)
def prepare_submission(folder_in, folder_out):
nii = subfiles(folder_in, suffix='.gz', join=False)
maybe_mkdir_p(folder_out)
for n in nii:
i = n.split('-')[-1][:-10]
shutil.copy(join(folder_in, n), join(folder_out, i + '.nii.gz'))
def get_ids_from_folder(folder):
cts = subfiles(folder, suffix='_ct.nii.gz', join=False)
ids = []
for c in cts:
ids.append(c.split('-')[-1][:-10])
return ids
def postprocess_submission(folder_ct, folder_pred, folder_postprocessed, bbox_distance_to_seg_in_cm=7.5):
"""
segment with lung mask, get bbox from that, use bbox to remove predictions in background
WE EXPERIMENTED WITH THAT ON THE VALIDATION SET AND FOUND THAT IT DOESN'T DO ANYTHING. NOT USED FOR TEST SET
"""
# pip install git+https://github.com/JoHof/lungmask
cts = subfiles(folder_ct, suffix='_ct.nii.gz', join=False)
output_files = [i[:-10] + '_lungmask.nii.gz' for i in cts]
# run lungmask on everything
for i, o in zip(cts, output_files):
if not isfile(join(folder_ct, o)):
subprocess.call(['lungmask', join(folder_ct, i), join(folder_ct, o), '--modelname', 'R231CovidWeb'])
if not isdir(folder_postprocessed):
maybe_mkdir_p(folder_postprocessed)
ids = get_ids_from_folder(folder_ct)
for i in ids:
# find lungmask
lungmask_file = join(folder_ct, 'volume-covid19-A-' + i + '_lungmask.nii.gz')
if not isfile(lungmask_file):
raise RuntimeError('missing lung')
seg_file = join(folder_pred, 'volume-covid19-A-' + i + '_ct.nii.gz')
if not isfile(seg_file):
raise RuntimeError('missing seg')
lung_mask = sitk.GetArrayFromImage(sitk.ReadImage(lungmask_file))
seg_itk = sitk.ReadImage(seg_file)
seg = sitk.GetArrayFromImage(seg_itk)
where = np.argwhere(lung_mask != 0)
bbox = [
[min(where[:, 0]), max(where[:, 0])],
[min(where[:, 1]), max(where[:, 1])],
[min(where[:, 2]), max(where[:, 2])],
]
spacing = np.array(seg_itk.GetSpacing())[::-1]
# print(bbox)
for dim in range(3):
sp = spacing[dim]
voxels_extend = max(int(np.ceil(bbox_distance_to_seg_in_cm / sp)), 1)
bbox[dim][0] = max(0, bbox[dim][0] - voxels_extend)
bbox[dim][1] = min(seg.shape[dim], bbox[dim][1] + voxels_extend)
# print(bbox)
seg_old = np.copy(seg)
seg[0:bbox[0][0], :, :] = 0
seg[bbox[0][1]:, :, :] = 0
seg[:, 0:bbox[1][0], :] = 0
seg[:, bbox[1][1]:, :] = 0
seg[:, :, 0:bbox[2][0]] = 0
seg[:, :, bbox[2][1]:] = 0
if np.any(seg_old != seg):
print('changed seg', i)
argwhere = np.argwhere(seg != seg_old)
print(argwhere[np.random.choice(len(argwhere), 10)])
seg_corr = sitk.GetImageFromArray(seg)
seg_corr.CopyInformation(seg_itk)
sitk.WriteImage(seg_corr, join(folder_postprocessed, 'volume-covid19-A-' + i + '_ct.nii.gz'))
def manually_set_configurations():
"""
ALSO NOT USED!
:return:
"""
task115_dir = join(preprocessing_output_dir, convert_id_to_task_name(115))
## larger patch size
# task115 3d_fullres default is:
"""
{'batch_size': 2,
'num_pool_per_axis': [2, 6, 6],
'patch_size': array([ 28, 256, 256]),
'median_patient_size_in_voxels': array([ 62, 512, 512]),
'current_spacing': array([5. , 0.74199998, 0.74199998]),
'original_spacing': array([5. , 0.74199998, 0.74199998]),
'do_dummy_2D_data_aug': True,
'pool_op_kernel_sizes': [[1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]],
'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]]}
"""
plans = load_pickle(join(task115_dir, 'nnUNetPlansv2.1_plans_3D.pkl'))
fullres_stage = plans['plans_per_stage'][1]
fullres_stage['patch_size'] = np.array([ 64, 320, 320])
fullres_stage['num_pool_per_axis'] = [4, 6, 6]
fullres_stage['pool_op_kernel_sizes'] = [[1, 2, 2],
[1, 2, 2],
[2, 2, 2],
[2, 2, 2],
[2, 2, 2],
[2, 2, 2]]
fullres_stage['conv_kernel_sizes'] = [[1, 3, 3],
[1, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]]
save_pickle(plans, join(task115_dir, 'nnUNetPlansv2.1_custom_plans_3D.pkl'))
## larger batch size
# (default for all 3d trainings is batch size 2)
increase_batch_size(join(task115_dir, 'nnUNetPlansv2.1_plans_3D.pkl'), join(task115_dir, 'nnUNetPlansv2.1_bs3x_plans_3D.pkl'), 3)
increase_batch_size(join(task115_dir, 'nnUNetPlansv2.1_plans_3D.pkl'), join(task115_dir, 'nnUNetPlansv2.1_bs5x_plans_3D.pkl'), 5)
# residual unet
"""
default is:
Out[7]:
{'batch_size': 2,
'num_pool_per_axis': [2, 6, 5],
'patch_size': array([ 28, 256, 224]),
'median_patient_size_in_voxels': array([ 62, 512, 512]),
'current_spacing': array([5. , 0.74199998, 0.74199998]),
'original_spacing': array([5. , 0.74199998, 0.74199998]),
'do_dummy_2D_data_aug': True,
'pool_op_kernel_sizes': [[1, 1, 1],
[1, 2, 2],
[1, 2, 2],
[2, 2, 2],
[2, 2, 2],
[1, 2, 2],
[1, 2, 1]],
'conv_kernel_sizes': [[1, 3, 3],
[1, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]],
'num_blocks_encoder': (1, 2, 3, 4, 4, 4, 4),
'num_blocks_decoder': (1, 1, 1, 1, 1, 1)}
"""
plans = load_pickle(join(task115_dir, 'nnUNetPlans_FabiansResUNet_v2.1_plans_3D.pkl'))
fullres_stage = plans['plans_per_stage'][1]
fullres_stage['patch_size'] = np.array([ 56, 256, 256])
fullres_stage['num_pool_per_axis'] = [3, 6, 6]
fullres_stage['pool_op_kernel_sizes'] = [[1, 1, 1],
[1, 2, 2],
[1, 2, 2],
[2, 2, 2],
[2, 2, 2],
[2, 2, 2],
[1, 2, 2]]
fullres_stage['conv_kernel_sizes'] = [[1, 3, 3],
[1, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]]
save_pickle(plans, join(task115_dir, 'nnUNetPlans_FabiansResUNet_v2.1_custom_plans_3D.pkl'))
def check_same(img1: str, img2: str):
"""
checking initial vs corrected dataset
:param img1:
:param img2:
:return:
"""
img1 = sitk.GetArrayFromImage(sitk.ReadImage(img1))
img2 = sitk.GetArrayFromImage(sitk.ReadImage(img2))
if not np.all([i==j for i, j in zip(img1.shape, img2.shape)]):
print('shape')
return False
else:
same = np.all(img1==img2)
if same: return True
else:
diffs = np.argwhere(img1!=img2)
print('content in', diffs.shape[0], 'voxels')
print('random disagreements:')
print(diffs[np.random.choice(len(diffs), min(3, diffs.shape[0]), replace=False)])
return False
def check_dataset_same(dataset_old='/home/fabian/Downloads/COVID-19-20/Train',
dataset_new='/home/fabian/data/COVID-19-20_officialCorrected/COVID-19-20_v2/Train'):
"""
:param dataset_old:
:param dataset_new:
:return:
"""
cases = [i[:-10] for i in subfiles(dataset_new, suffix='_ct.nii.gz', join=False)]
for c in cases:
data_file = join(dataset_old, c + '_ct_corrDouble.nii.gz')
corrected_double = False
if not isfile(data_file):
data_file = join(dataset_old, c+'_ct.nii.gz')
else:
corrected_double = True
data_file_new = join(dataset_new, c+'_ct.nii.gz')
same = check_same(data_file, data_file_new)
if not same: print('data differs in case', c, '\n')
seg_file = join(dataset_old, c + '_seg_corrDouble_corrected.nii.gz')
if not isfile(seg_file):
seg_file = join(dataset_old, c + '_seg_corrected_auto.nii.gz')
if isfile(seg_file):
assert ~corrected_double
else:
seg_file = join(dataset_old, c + '_seg_corrected.nii.gz')
if isfile(seg_file):
assert ~corrected_double
else:
seg_file = join(dataset_old, c + '_seg_corrDouble.nii.gz')
if isfile(seg_file):
assert ~corrected_double
else:
seg_file = join(dataset_old, c + '_seg.nii.gz')
seg_file_new = join(dataset_new, c + '_seg.nii.gz')
same = check_same(seg_file, seg_file_new)
if not same: print('seg differs in case', c, '\n')
if __name__ == '__main__':
# this is the folder containing the data as downloaded from https://covid-segmentation.grand-challenge.org/COVID-19-20/
# (zip file was decompressed!)
downloaded_data_dir = '/home/fabian/data/COVID-19-20_officialCorrected/COVID-19-20_v2/'
task_name = "Task115_COVIDSegChallenge"
target_base = join(nnUNet_raw_data, task_name)
target_imagesTr = join(target_base, "imagesTr")
target_imagesVal = join(target_base, "imagesVal")
target_labelsTr = join(target_base, "labelsTr")
maybe_mkdir_p(target_imagesTr)
maybe_mkdir_p(target_imagesVal)
maybe_mkdir_p(target_labelsTr)
train_orig = join(downloaded_data_dir, "Train")
# convert training set
cases = [i[:-10] for i in subfiles(train_orig, suffix='_ct.nii.gz', join=False)]
for c in cases:
data_file = join(train_orig, c+'_ct.nii.gz')
# before there was the official corrected dataset we did some corrections of our own. These corrections were
# dropped when the official dataset was revised.
seg_file = join(train_orig, c + '_seg_corrected.nii.gz')
if not isfile(seg_file):
seg_file = join(train_orig, c + '_seg.nii.gz')
shutil.copy(data_file, join(target_imagesTr, c + "_0000.nii.gz"))
shutil.copy(seg_file, join(target_labelsTr, c + '.nii.gz'))
val_orig = join(downloaded_data_dir, "Validation")
cases = [i[:-10] for i in subfiles(val_orig, suffix='_ct.nii.gz', join=False)]
for c in cases:
data_file = join(val_orig, c + '_ct.nii.gz')
shutil.copy(data_file, join(target_imagesVal, c + "_0000.nii.gz"))
generate_dataset_json(
join(target_base, 'dataset.json'),
target_imagesTr,
None,
("CT", ),
{0: 'background', 1: 'covid'},
task_name,
dataset_reference='https://covid-segmentation.grand-challenge.org/COVID-19-20/'
)
# performance summary (train set 5-fold cross-validation)
# baselines
# 3d_fullres nnUNetTrainerV2__nnUNetPlans_v2.1 0.7441
# 3d_lowres nnUNetTrainerV2__nnUNetPlans_v2.1 0.745
# models used for test set prediction
# 3d_fullres nnUNetTrainerV2_ResencUNet_DA3__nnUNetPlans_FabiansResUNet_v2.1 0.7543
# 3d_fullres nnUNetTrainerV2_ResencUNet__nnUNetPlans_FabiansResUNet_v2.1 0.7527
# 3d_lowres nnUNetTrainerV2_ResencUNet_DA3_BN__nnUNetPlans_FabiansResUNet_v2.1 0.7513
# 3d_fullres nnUNetTrainerV2_DA3_BN__nnUNetPlans_v2.1 0.7498
# 3d_fullres nnUNetTrainerV2_DA3__nnUNetPlans_v2.1 0.7532
# Test set prediction
# nnUNet_predict -i COVID-19-20_TestSet -o covid_testset_predictions/3d_fullres/nnUNetTrainerV2_ResencUNet_DA3__nnUNetPlans_FabiansResUNet_v2.1 -tr nnUNetTrainerV2_ResencUNet_DA3 -p nnUNetPlans_FabiansResUNet_v2.1 -m 3d_fullres -f 0 1 2 3 4 5 6 7 8 9 -t 115 -z
# nnUNet_predict -i COVID-19-20_TestSet -o covid_testset_predictions/3d_fullres/nnUNetTrainerV2_ResencUNet__nnUNetPlans_FabiansResUNet_v2.1 -tr nnUNetTrainerV2_ResencUNet -p nnUNetPlans_FabiansResUNet_v2.1 -m 3d_fullres -f 0 1 2 3 4 5 6 7 8 9 -t 115 -z
# nnUNet_predict -i COVID-19-20_TestSet -o covid_testset_predictions/3d_lowres/nnUNetTrainerV2_ResencUNet_DA3_BN__nnUNetPlans_FabiansResUNet_v2.1 -tr nnUNetTrainerV2_ResencUNet_DA3_BN -p nnUNetPlans_FabiansResUNet_v2.1 -m 3d_lowres -f 0 1 2 3 4 5 6 7 8 9 -t 115 -z
# nnUNet_predict -i COVID-19-20_TestSet -o covid_testset_predictions/3d_fullres/nnUNetTrainerV2_DA3_BN__nnUNetPlans_v2.1 -tr nnUNetTrainerV2_DA3_BN -m 3d_fullres -f 0 1 2 3 4 5 6 7 8 9 -t 115 -z
# nnUNet_predict -i COVID-19-20_TestSet -o covid_testset_predictions/3d_fullres/nnUNetTrainerV2_DA3__nnUNetPlans_v2.1 -tr nnUNetTrainerV2_DA3 -m 3d_fullres -f 0 1 2 3 4 5 6 7 8 9 -t 115 -z
# nnUNet_ensemble -f 3d_lowres/nnUNetTrainerV2_ResencUNet_DA3_BN__nnUNetPlans_FabiansResUNet_v2.1/ 3d_fullres/nnUNetTrainerV2_ResencUNet__nnUNetPlans_FabiansResUNet_v2.1/ 3d_fullres/nnUNetTrainerV2_ResencUNet_DA3__nnUNetPlans_FabiansResUNet_v2.1/ 3d_fullres/nnUNetTrainerV2_DA3_BN__nnUNetPlans_v2.1/ 3d_fullres/nnUNetTrainerV2_DA3__nnUNetPlans_v2.1/ -o ensembled