You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import numpy as np
import os
import re
os.environ["CUDA_VISIBLE_DEVICES"] ="-1"
from scipy.special import gamma
import scipy.stats
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from math import pi
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import seaborn as sns
from scipy.integrate import quad
class GaussianCopulaTriL(tfd.TransformedDistribution):
"""Takes a location, and lower triangular matrix for the Cholesky factor."""
def __init__(self, loc, scale_tril):
super(GaussianCopulaTriL, self).__init__(
distribution=tfd.MultivariateNormalTriL(
loc=loc,
scale_tril=scale_tril),
bijector=tfb.NormalCDF(),
validate_args=False,
name="GaussianCopulaTriLUniform")
def _parameter_properties(self, dtype, num_classes=None):
return dict(
# Annotations may optionally specify properties, such as `event_ndims`,
# `default_constraining_bijector_fn`, `specifies_shape`, etc.; see
# the `ParameterProperties` documentation for details.
loc=tfp.util.ParameterProperties(),
scale_tril=tfp.util.ParameterProperties())
class WarpedGaussianCopula(tfd.TransformedDistribution):
"""Application of a Gaussian Copula on a list of target marginals.
This implements an application of a Gaussian Copula. Given [x_0, ... x_n]
which are distributed marginally (with CDF) [F_0, ... F_n],
`GaussianCopula` represents an application of the Copula, such that the
resulting multivariate distribution has the above specified marginals.
The marginals are specified by `marginal_bijectors`: These are
bijectors whose `inverse` encodes the CDF and `forward` the inverse CDF.
block_sizes is a 1-D Tensor to determine splits for `marginal_bijectors`
length should be same as length of `marginal_bijectors`.
See tfb.Blockwise for details
"""
def __init__(self, loc, scale_tril, marginal_bijectors, block_sizes=None):
super(WarpedGaussianCopula, self).__init__(
distribution=GaussianCopulaTriL(loc=loc, scale_tril=scale_tril),
bijector=tfb.Blockwise(bijectors=marginal_bijectors,
block_sizes=block_sizes),
validate_args=False,
name="GaussianCopula")
def _parameter_properties(self, dtype, num_classes=None):
return dict(
# Annotations may optionally specify properties, such as `event_ndims`,
# `default_constraining_bijector_fn`, `specifies_shape`, etc.; see
# the `ParameterProperties` documentation for details.
loc=tfp.util.ParameterProperties(),
scale_tril=tfp.util.ParameterProperties(),
marginal_bijectors = tfp.util.ParameterProperties(),
block_sizes = tfp.util.ParameterProperties())
def joint_log_prob(data,
correlation,
ijv_loc,
ijv_scale,
cca_loc,
cca_scale):
"""
Estimate the mean and variance of a Normal distribution.
Parameters
----------
@data: the observed data, binary (0, 1)
@mu: the mean parameter. This is "learnable"
@sigma: the variance parameter. This is "learnable"
"""
correlation_prior = tfd.Normal(loc=0., scale=1.)
ijv_loc_prior = tfd.Normal(loc=400., scale=200.)
ijv_scale_prior = tfd.Normal(loc=100., scale=50.)
cca_loc_prior = tfd.Normal(loc=50., scale=50.)
cca_scale_prior = tfd.Normal(loc=20., scale=10.)
zero_prior = tfd.Normal(loc=0., scale=1.)
if True:
rv_data = WarpedGaussianCopula(
loc=[0., 0.],
scale_tril=[[1., 0.], [correlation, tf.sqrt(1. - correlation ** 2)]],
#These encode the marginals we want. In this case we want X_0 has
#Kumaraswamy marginal, and X_1 has Gumbel marginal.
marginal_bijectors=[
tfb.Invert(tfb.KumaraswamyCDF(ijv_loc, ijv_scale)),
tfb.Invert(tfb.GumbelCDF(loc=cca_loc, scale=cca_scale))])
return (
correlation_prior.log_prob(correlation) +
ijv_loc_prior.log_prob(ijv_loc) +
ijv_scale_prior.log_prob(ijv_scale) +
cca_loc_prior.log_prob(cca_loc) +
cca_scale_prior.log_prob(cca_scale) +
tf.reduce_sum(rv_data.log_prob(data))
)
def prediction(correlation_,
ijv_loc_,
ijv_scal_,
cca_loc_,
cca_scale_):
sampler = lambda z: np.random.choice(z, 1, replace=True)
correlation = np.array(sampler(correlation_))[0]
ijv_loc = np.array(sampler(ijv_loc_))[0]
ijv_scale = np.array(sampler(ijv_scal_))[0]
cca_loc = np.array(sampler(cca_loc_))[0]
cca_scale = np.array(sampler(cca_scale_))[0]
print("correlation, ijv_loc, ijv_scale, cca_loc, cca_scale",
correlation, ijv_loc, ijv_scale, cca_loc, cca_scale)
y_hat = WarpedGaussianCopula(
loc=[0., 0.],
scale_tril=[[1., 0.], [correlation, tf.sqrt(1. - correlation ** 2)]],
marginal_bijectors=[
tfb.Invert(tfb.KumaraswamyCDF(ijv_loc, ijv_scale)),
tfb.Invert(tfb.GumbelCDF(loc=cca_loc, scale=cca_scale))])
return y_hat
data = np.array(value_lists)[:, 1:, 0]
unnormalized_posterior = lambda correlation, ijv_loc, ijv_scale, cca_loc, cca_scale: \
joint_log_prob(data, correlation, ijv_loc, ijv_scale, cca_loc, cca_scale)
[correlation_, ijv_loc_, ijv_scale_, cca_loc_, cca_scale_] = run_chain(
construct_hmc(unnormalized_posterior, adaptation_steps=NUM_ADAPTATION),
inits=[0., 300., 200., 50., 20.],
iters=[NUM_POSTERIOR_SAMPLES, NUM_BURNIN_ITERATIONS]
)
The text was updated successfully, but these errors were encountered:
The samples is the initial values.
import numpy as np
import os
import re
os.environ["CUDA_VISIBLE_DEVICES"] ="-1"
from scipy.special import gamma
import scipy.stats
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from math import pi
import tensorflow_probability as tfp
tfd = tfp.distributions
tfb = tfp.bijectors
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import seaborn as sns
from scipy.integrate import quad
print("TFP Version", tfp.version)
print("TF Version", tf.version)
np.random.seed(1704)
import scipy
import seaborn
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import nquad
data = np.array(value_lists)[:, :, 0]
NUM_POSTERIOR_SAMPLES = 10000
NUM_BURNIN_ITERATIONS = int(0.25 * NUM_BURNIN_ITERATIONS)
NUM_ADAPTATION = int(0.5 * NUM_BURNIN_ITERATIONS)
The text was updated successfully, but these errors were encountered: