We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Branch: https://github.com/shawwn/compare_gan/blob/2020-05-09/dynamicvars/run_bigrun61.sh
dataset.name = "images_128" options.datasets = "gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/danbooru2019-s/danbooru2019-s-0*,gs://darnbooru-euw4a/datasets/imagenet/train-0*,gs://darnbooru-euw4a/datasets/flickr3m/flickr3m-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*,gs://darnbooru-euw4a/datasets/ffhq1024/ffhq1024-0*,gs://darnbooru-euw4a/datasets/portraits/portraits-0*" options.random_labels = False options.num_classes = 1000 train_imagenet_transform.crop_method = "random" options.z_dim = 120 resnet_biggan.Generator.ch = 128 resnet_biggan.Discriminator.ch = 128 resnet_biggan.Generator.blocks_with_attention = "64" resnet_biggan.Discriminator.blocks_with_attention = "64" options.architecture = "resnet_biggan_arch" ModularGAN.conditional = False options.batch_size = 2048 options.gan_class = @ModularGAN options.lamba = 1 options.training_steps = 250000 weights.initializer = "orthogonal" spectral_norm.singular_value = "auto" # Generator G.batch_norm_fn = @batch_norm G.spectral_norm = True ModularGAN.g_use_ema = True resnet_biggan.Generator.hierarchical_z = True resnet_biggan.Generator.embed_z = True resnet_biggan.Generator.embed_y = False standardize_batch.decay = 0.9 standardize_batch.epsilon = 1e-5 standardize_batch.use_moving_averages = False standardize_batch.use_cross_replica_mean = None standardize_batch.use_evonorm = True # Discriminator options.disc_iters = 1 ModularGAN.experimental_joint_gen_for_disc = False ModularGAN.experimental_force_graph_unroll = False D.spectral_norm = True resnet_biggan.Discriminator.project_y = False # Loss and optimizer loss.fn = @hinge penalty.fn = @no_penalty ModularGAN.g_lr = 0.0000666 ModularGAN.d_lr = 0.0005 ModularGAN.g_lr_mul = 1.0 ModularGAN.d_lr_mul = 1.0 ModularGAN.g_optimizer_fn = @tf.train.AdamOptimizer ModularGAN.d_optimizer_fn = @tf.train.AdamOptimizer tf.train.AdamOptimizer.beta1 = 0.0 tf.train.AdamOptimizer.beta2 = 0.999 z.distribution_fn = @tf.random.normal eval_z.distribution_fn = @tf.random.normal run_config.experimental_host_call_every_n_steps = 50 TpuSummaries.save_image_steps = 50 run_config.iterations_per_loop = 500 run_config.save_checkpoints_steps = 2000 options.d_flood = -128.0 options.g_flood = -128.0 options.d_stop_g_above = 128.0 options.g_stop_d_above = 128.0 options.d_stop_d_below = -128.0 options.g_stop_g_below = -128.0 options.d_stop_d_below = 0.20 #options.g_stop_g_below = 0.05 #options.d_stop_g_above = 1.00 options.g_stop_d_above = 1.50
knobs.stop = False #knobs.rollback = 46000 knobs.rollback = False ModularGAN.g_lr_mul = 1.0 ModularGAN.d_lr_mul = 0.1 options.g_stop_d_above = 1.50
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Branch: https://github.com/shawwn/compare_gan/blob/2020-05-09/dynamicvars/run_bigrun61.sh
The text was updated successfully, but these errors were encountered: