Skip to content

Latest commit

 

History

History
80 lines (52 loc) · 3.31 KB

README.md

File metadata and controls

80 lines (52 loc) · 3.31 KB

Mono Depth ROS

Configuration

  • Topics subscribed by the ROS node
    • /image/camera_raw - Input image from camera (can be changed on the parameter topic_color)
  • Topics published by the ROS node, containing depth and point cloud data generated.
    • /image/depth - Image message containing the depth image estimated (can be changed on the parameter topic_depth).
    • /pointcloud - Pointcloud2 message containing a estimated point cloud (can be changed on the parameter topic_pointcloud).
  • Parameters that can be configurated
    • frame_id - TF Frame id to be published in the output messages.
    • debug - If set true a window with the output result if displayed.
    • min_depth, max_depth - Min and max depth values considered for scaling.
    • batch_size - Batch size used when predicting the depth image using the model provided.
    • model_file - Keras model file used, relative to the monodepth package.

Setup

  • Install Python 2 and ROS dependencies
apt-get install python python-pip curl
pip install rosdep rospkg rosinstall_generator rosinstall wstool vcstools catkin_tools catkin_pkg
  • Install project dependencies
pip install tensorflow keras pillow matplotlib scikit-learn scikit-image opencv-python pydot GraphViz tk
  • Clone the project into your ROS workspace and download pretrained models
git clone https://github.com/tentone/monodepth.git
cd monodepth/models
curl –o nyu.h5 https://s3-eu-west-1.amazonaws.com/densedepth/nyu.h5

Launch

  • Example ROS launch entry provided bellow, for easier integration into your already existing ROS launch pipeline.
<node pkg="monodepth" type="monodepth.py" name="monodepth" output="screen" respawn="true">
    <param name="topic_color" value="/camera/image_raw"/>
    <param name="topic_depth" value="/camera/depth"/>
</node>

Pretrained models

Datasets for training

  • NYU Depth V2 (50K)
    • The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
    • Download dataset (4.1 GB)
  • KITTI Dataset (80K)
    • Datasets captured by driving around the mid-size city of Karlsruhe, in rural areas and on highways. Up to 15 cars and 30 pedestrians are visible per image.