-
Notifications
You must be signed in to change notification settings - Fork 426
/
graph.py
112 lines (94 loc) · 4.84 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import json
import logging
from termcolor import colored
import modeling
import args
import tensorflow as tf
import os
def set_logger(context, verbose=False):
logger = logging.getLogger(context)
logger.setLevel(logging.DEBUG if verbose else logging.INFO)
formatter = logging.Formatter(
'%(levelname)-.1s:' + context + ':[%(filename).5s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt=
'%m-%d %H:%M:%S')
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG if verbose else logging.INFO)
console_handler.setFormatter(formatter)
logger.handlers = []
logger.addHandler(console_handler)
return logger
def optimize_graph(logger=None, verbose=False):
if not logger:
logger = set_logger(colored('BERT_VEC', 'yellow'), verbose)
try:
# we don't need GPU for optimizing the graph
from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference
tf.gfile.MakeDirs(args.output_dir)
config_fp = args.config_name
logger.info('model config: %s' % config_fp)
# 加载bert配置文件
with tf.gfile.GFile(config_fp, 'r') as f:
bert_config = modeling.BertConfig.from_dict(json.load(f))
logger.info('build graph...')
# input placeholders, not sure if they are friendly to XLA
input_ids = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_ids')
input_mask = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_mask')
input_type_ids = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_type_ids')
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
with jit_scope():
input_tensors = [input_ids, input_mask, input_type_ids]
model = modeling.BertModel(
config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=input_type_ids,
use_one_hot_embeddings=False)
# 获取所有要训练的变量
tvars = tf.trainable_variables()
init_checkpoint = args.ckpt_name
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
# 共享卷积核
with tf.variable_scope("pooling"):
# 如果只有一层,就只取对应那一层的weight
if len(args.layer_indexes) == 1:
encoder_layer = model.all_encoder_layers[args.layer_indexes[0]]
else:
# 否则遍历需要取的层,把所有层的weight取出来并拼接起来shape:768*层数
all_layers = [model.all_encoder_layers[l] for l in args.layer_indexes]
encoder_layer = tf.concat(all_layers, -1)
mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1)
masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / (
tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10)
input_mask = tf.cast(input_mask, tf.float32)
# 以下代码是句向量的生成方法,可以理解为做了一个卷积的操作,但是没有把结果相加, 卷积核是input_mask
pooled = masked_reduce_mean(encoder_layer, input_mask)
pooled = tf.identity(pooled, 'final_encodes')
output_tensors = [pooled]
tmp_g = tf.get_default_graph().as_graph_def()
# allow_soft_placement:自动选择运行设备
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
logger.info('load parameters from checkpoint...')
sess.run(tf.global_variables_initializer())
logger.info('freeze...')
tmp_g = tf.graph_util.convert_variables_to_constants(sess, tmp_g, [n.name[:-2] for n in output_tensors])
dtypes = [n.dtype for n in input_tensors]
logger.info('optimize...')
tmp_g = optimize_for_inference(
tmp_g,
[n.name[:-2] for n in input_tensors],
[n.name[:-2] for n in output_tensors],
[dtype.as_datatype_enum for dtype in dtypes],
False)
# tmp_file = tempfile.NamedTemporaryFile('w', delete=False, dir=args.output_dir).name
tmp_file = args.graph_file
logger.info('write graph to a tmp file: %s' % tmp_file)
with tf.gfile.GFile(tmp_file, 'wb') as f:
f.write(tmp_g.SerializeToString())
return tmp_file
except Exception as e:
logger.error('fail to optimize the graph!')
logger.error(e)