-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.py
90 lines (68 loc) · 2.77 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# -*- coding: utf-8 -*-
import sys, copy
import numpy as np
import lib.io
import lib.viz
import lib.cl
def main(argv):
input_filename_x = 'train_data.csv'
input_filename_y = 'train_labels.csv'
test_input_filename = 'test_data.csv'
svc_model_filename = 'svc_classif.pkl'
lr_model_filename = 'lr_classif.pkl'
rfc_model_filename = 'rfc_classif.pkl'
rfc_feat_imp_filename = 'rfc_feat_imp.png'
model_comp_result_chart_filename = 'method_comp_res.png'
io = lib.io.IO()
viz = lib.viz.Viz()
cl = lib.cl.CL(io, viz)
# Read data
X, y = io.read_data(input_filename_x, input_filename_y)
test_x = io.read_data(test_input_filename, None)
X_ = copy.deepcopy(X)
y_ = copy.deepcopy(y)
print "There are " + str(len(X)) + " samples in the train set."
print "There are " + str(len(test_x)) + " samples in the test set."
test_x = np.matrix(test_x)
test_ids = range(1, len(test_x)+1)
# Remove outliers
X, y = cl.lof(np.matrix(X), np.matrix(y))
X_, y_ = cl.lof(np.matrix(X_), np.matrix(y_))
# Shuffle
X, y = io.shuffle(X, y)
X_, y_ = io.shuffle(X_, y_)
# PCA
X = cl.pca(np.matrix(X), 'pca_explained_variance.png').tolist()
test_x = cl.pca(np.matrix(test_x), None).tolist()
# Split data to train and validation set
# mini_batches
# ids, batches_x, batches_y = io.split_data(X, y, 100, 100)
val_ids, val_x, val_y = io.pick_set(X, y, 726)
_, no_pca_val_x, no_pca_val_y = io.pick_set(X_, y_, 726)
train_ids, train_x, train_y = io.pick_set(X, y, 3200)
_, no_pca_train_x, no_pca_train_y = io.pick_set(X_, y_, 3200)
# Train
cl.svc_cl_train(train_x, train_y, filename=svc_model_filename)
cl.lr_cl_train(train_x, train_y, filename=lr_model_filename)
cl.rfc_cl_train(no_pca_train_x, no_pca_train_y,
filename=rfc_model_filename,
feat_imp_plot_filename=rfc_feat_imp_filename)
# cl.svc_cl_load(svc_model_filename)
# cl.lr_cl_load(lr_model_filename)
# cl.rfc_cl_load(rfc_model_filename)
# validate
results = {}
results['SVC'] = cl.svc_cl_val(val_x, val_y)
results['Linear Regression'] = cl.lr_cl_val(val_x, val_y)
results['Random Forest Classifier'] = cl.rfc_cl_val(no_pca_val_x, no_pca_val_y)
# Draw some results
viz.model_comp_results(results, model_comp_result_chart_filename)
# pred_class, pred_proba = cl.svc_cl_pred(val_x)
# pred_class, pred_proba = cl.rfc_cl_pred(val_x)
# predict
pred_class, pred_proba = cl.lr_cl_pred(test_x)
# Output
io.write_classes('classes_sub_result.csv', test_ids, pred_class)
io.write_probabilities('probabilities_sub_result.csv', test_ids, pred_proba)
if __name__ == "__main__":
main(sys.argv[1:])