-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
909 lines (823 loc) · 26.8 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TENSORRT_COMMON_H
#define TENSORRT_COMMON_H
// For loadLibrary
#ifdef _MSC_VER
// Needed so that the max/min definitions in windows.h do not conflict with std::max/min.
#define NOMINMAX
#include <windows.h>
#undef NOMINMAX
#else
#include <dlfcn.h>
#endif
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "logger.h"
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstring>
#include <cuda_runtime_api.h>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ratio>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
using namespace nvinfer1;
using namespace plugin;
#ifdef _MSC_VER
#define FN_NAME __FUNCTION__
#else
#define FN_NAME __func__
#endif
#if (!defined(__ANDROID__) && defined(__aarch64__)) || defined(__QNX__)
#define ENABLE_DLA_API 1
#endif
#define CHECK(status) \
do \
{ \
auto ret = (status); \
if (ret != 0) \
{ \
std::cerr << "Cuda failure: " << ret << std::endl; \
abort(); \
} \
} while (0)
#define CHECK_RETURN_W_MSG(status, val, errMsg) \
do \
{ \
if (!(status)) \
{ \
std::cerr << errMsg << " Error in " << __FILE__ << ", function " << FN_NAME << "(), line " << __LINE__ \
<< std::endl; \
return val; \
} \
} while (0)
#define CHECK_RETURN(status, val) CHECK_RETURN_W_MSG(status, val, "")
#define OBJ_GUARD(A) std::unique_ptr<A, void (*)(A * t)>
template <typename T, typename T_>
OBJ_GUARD(T)
makeObjGuard(T_* t)
{
CHECK(!(std::is_base_of<T, T_>::value || std::is_same<T, T_>::value));
auto deleter = [](T* t) { t->destroy(); };
return std::unique_ptr<T, decltype(deleter)>{static_cast<T*>(t), deleter};
}
constexpr long double operator"" _GiB(long double val)
{
return val * (1 << 30);
}
constexpr long double operator"" _MiB(long double val)
{
return val * (1 << 20);
}
constexpr long double operator"" _KiB(long double val)
{
return val * (1 << 10);
}
// These is necessary if we want to be able to write 1_GiB instead of 1.0_GiB.
// Since the return type is signed, -1_GiB will work as expected.
constexpr long long int operator"" _GiB(long long unsigned int val)
{
return val * (1 << 30);
}
constexpr long long int operator"" _MiB(long long unsigned int val)
{
return val * (1 << 20);
}
constexpr long long int operator"" _KiB(long long unsigned int val)
{
return val * (1 << 10);
}
struct SimpleProfiler : public nvinfer1::IProfiler
{
struct Record
{
float time{0};
int count{0};
};
virtual void reportLayerTime(const char* layerName, float ms)
{
mProfile[layerName].count++;
mProfile[layerName].time += ms;
if (std::find(mLayerNames.begin(), mLayerNames.end(), layerName) == mLayerNames.end())
{
mLayerNames.push_back(layerName);
}
}
SimpleProfiler(const char* name, const std::vector<SimpleProfiler>& srcProfilers = std::vector<SimpleProfiler>())
: mName(name)
{
for (const auto& srcProfiler : srcProfilers)
{
for (const auto& rec : srcProfiler.mProfile)
{
auto it = mProfile.find(rec.first);
if (it == mProfile.end())
{
mProfile.insert(rec);
}
else
{
it->second.time += rec.second.time;
it->second.count += rec.second.count;
}
}
}
}
friend std::ostream& operator<<(std::ostream& out, const SimpleProfiler& value)
{
out << "========== " << value.mName << " profile ==========" << std::endl;
float totalTime = 0;
std::string layerNameStr = "TensorRT layer name";
int maxLayerNameLength = std::max(static_cast<int>(layerNameStr.size()), 70);
for (const auto& elem : value.mProfile)
{
totalTime += elem.second.time;
maxLayerNameLength = std::max(maxLayerNameLength, static_cast<int>(elem.first.size()));
}
auto old_settings = out.flags();
auto old_precision = out.precision();
// Output header
{
out << std::setw(maxLayerNameLength) << layerNameStr << " ";
out << std::setw(12) << "Runtime, "
<< "%"
<< " ";
out << std::setw(12) << "Invocations"
<< " ";
out << std::setw(12) << "Runtime, ms" << std::endl;
}
for (size_t i = 0; i < value.mLayerNames.size(); i++)
{
const std::string layerName = value.mLayerNames[i];
auto elem = value.mProfile.at(layerName);
out << std::setw(maxLayerNameLength) << layerName << " ";
out << std::setw(12) << std::fixed << std::setprecision(1) << (elem.time * 100.0F / totalTime) << "%"
<< " ";
out << std::setw(12) << elem.count << " ";
out << std::setw(12) << std::fixed << std::setprecision(2) << elem.time << std::endl;
}
out.flags(old_settings);
out.precision(old_precision);
out << "========== " << value.mName << " total runtime = " << totalTime << " ms ==========" << std::endl;
return out;
}
private:
std::string mName;
std::vector<std::string> mLayerNames;
std::map<std::string, Record> mProfile;
};
// Locate path to file, given its filename or filepath suffix and possible dirs it might lie in
// Function will also walk back MAX_DEPTH dirs from CWD to check for such a file path
inline std::string locateFile(const std::string& filepathSuffix, const std::vector<std::string>& directories)
{
const int MAX_DEPTH{10};
bool found{false};
std::string filepath;
for (auto& dir : directories)
{
if (!dir.empty() && dir.back() != '/')
{
#ifdef _MSC_VER
filepath = dir + "\\" + filepathSuffix;
#else
filepath = dir + "/" + filepathSuffix;
#endif
}
else
filepath = dir + filepathSuffix;
for (int i = 0; i < MAX_DEPTH && !found; i++)
{
std::ifstream checkFile(filepath);
found = checkFile.is_open();
if (found)
break;
filepath = "../" + filepath; // Try again in parent dir
}
if (found)
{
break;
}
filepath.clear();
}
if (filepath.empty())
{
std::string directoryList = std::accumulate(directories.begin() + 1, directories.end(), directories.front(),
[](const std::string& a, const std::string& b) { return a + "\n\t" + b; });
std::cout << "Could not find " << filepathSuffix << " in data directories:\n\t" << directoryList << std::endl;
std::cout << "&&&& FAILED" << std::endl;
exit(EXIT_FAILURE);
}
return filepath;
}
inline void readPGMFile(const std::string& fileName, uint8_t* buffer, int inH, int inW)
{
std::ifstream infile(fileName, std::ifstream::binary);
assert(infile.is_open() && "Attempting to read from a file that is not open.");
std::string magic, h, w, max;
infile >> magic >> h >> w >> max;
infile.seekg(1, infile.cur);
infile.read(reinterpret_cast<char*>(buffer), inH * inW);
}
namespace samplesCommon
{
// Swaps endianness of an integral type.
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T swapEndianness(const T& value)
{
uint8_t bytes[sizeof(T)];
for (int i = 0; i < static_cast<int>(sizeof(T)); ++i)
{
bytes[sizeof(T) - 1 - i] = *(reinterpret_cast<const uint8_t*>(&value) + i);
}
return *reinterpret_cast<T*>(bytes);
}
class HostMemory : public IHostMemory
{
public:
HostMemory() = delete;
void* data() const noexcept override
{
return mData;
}
std::size_t size() const noexcept override
{
return mSize;
}
DataType type() const noexcept override
{
return mType;
}
protected:
HostMemory(std::size_t size, DataType type)
: mSize(size)
, mType(type)
{
}
void* mData;
std::size_t mSize;
DataType mType;
};
template <typename ElemType, DataType dataType>
class TypedHostMemory : public HostMemory
{
public:
TypedHostMemory(std::size_t size)
: HostMemory(size, dataType)
{
mData = new ElemType[size];
};
void destroy() noexcept override
{
delete[](ElemType*) mData;
delete this;
}
ElemType* raw() noexcept
{
return static_cast<ElemType*>(data());
}
};
using FloatMemory = TypedHostMemory<float, DataType::kFLOAT>;
using HalfMemory = TypedHostMemory<uint16_t, DataType::kHALF>;
using ByteMemory = TypedHostMemory<uint8_t, DataType::kINT8>;
inline void* safeCudaMalloc(size_t memSize)
{
void* deviceMem;
CHECK(cudaMalloc(&deviceMem, memSize));
if (deviceMem == nullptr)
{
std::cerr << "Out of memory" << std::endl;
exit(1);
}
return deviceMem;
}
inline bool isDebug()
{
return (std::getenv("TENSORRT_DEBUG") ? true : false);
}
struct InferDeleter
{
template <typename T>
void operator()(T* obj) const
{
if (obj)
{
obj->destroy();
}
}
};
template <typename T>
inline std::shared_ptr<T> infer_object(T* obj)
{
if (!obj)
{
throw std::runtime_error("Failed to create object");
}
return std::shared_ptr<T>(obj, InferDeleter());
}
template <class Iter>
inline std::vector<size_t> argsort(Iter begin, Iter end, bool reverse = false)
{
std::vector<size_t> inds(end - begin);
std::iota(inds.begin(), inds.end(), 0);
if (reverse)
{
std::sort(inds.begin(), inds.end(), [&begin](size_t i1, size_t i2) { return begin[i2] < begin[i1]; });
}
else
{
std::sort(inds.begin(), inds.end(), [&begin](size_t i1, size_t i2) { return begin[i1] < begin[i2]; });
}
return inds;
}
inline bool readReferenceFile(const std::string& fileName, std::vector<std::string>& refVector)
{
std::ifstream infile(fileName);
if (!infile.is_open())
{
std::cout << "ERROR: readReferenceFile: Attempting to read from a file that is not open." << std::endl;
return false;
}
std::string line;
while (std::getline(infile, line))
{
if (line.empty())
continue;
refVector.push_back(line);
}
infile.close();
return true;
}
template <typename result_vector_t>
inline std::vector<std::string> classify(
const std::vector<std::string>& refVector, const result_vector_t& output, const size_t topK)
{
auto inds = samplesCommon::argsort(output.cbegin(), output.cend(), true);
std::vector<std::string> result;
for (size_t k = 0; k < topK; ++k)
{
result.push_back(refVector[inds[k]]);
}
return result;
}
// Returns top K indices, not values.
template <typename T>
inline std::vector<size_t> topK(const std::vector<T> inp, const size_t k)
{
std::vector<size_t> result;
std::vector<size_t> inds = samplesCommon::argsort(inp.cbegin(), inp.cend(), true);
result.assign(inds.begin(), inds.begin() + k);
return result;
}
template <typename T>
inline bool readASCIIFile(const std::string& fileName, const size_t size, std::vector<T>& out)
{
std::ifstream infile(fileName);
if (!infile.is_open())
{
std::cout << "ERROR readASCIIFile: Attempting to read from a file that is not open." << std::endl;
return false;
}
out.clear();
out.reserve(size);
out.assign(std::istream_iterator<T>(infile), std::istream_iterator<T>());
infile.close();
return true;
}
template <typename T>
inline bool writeASCIIFile(const std::string& fileName, const std::vector<T>& in)
{
std::ofstream outfile(fileName);
if (!outfile.is_open())
{
std::cout << "ERROR: writeASCIIFile: Attempting to write to a file that is not open." << std::endl;
return false;
}
for (auto fn : in)
{
outfile << fn << "\n";
}
outfile.close();
return true;
}
inline void print_version()
{
std::cout << " TensorRT version: " << NV_TENSORRT_MAJOR << "." << NV_TENSORRT_MINOR << "." << NV_TENSORRT_PATCH
<< "." << NV_TENSORRT_BUILD << std::endl;
}
inline std::string getFileType(const std::string& filepath)
{
return filepath.substr(filepath.find_last_of(".") + 1);
}
inline std::string toLower(const std::string& inp)
{
std::string out = inp;
std::transform(out.begin(), out.end(), out.begin(), ::tolower);
return out;
}
inline float getMaxValue(const float* buffer, int64_t size)
{
assert(buffer != nullptr);
assert(size > 0);
return *std::max_element(buffer, buffer + size);
}
// Ensures that every tensor used by a network has a scale.
//
// All tensors in a network must have a range specified if a calibrator is not used.
// This function is just a utility to globally fill in missing scales for the entire network.
//
// If a tensor does not have a scale, it is assigned inScales or outScales as follows:
//
// * If the tensor is the input to a layer or output of a pooling node, its scale is assigned inScales.
// * Otherwise its scale is assigned outScales.
//
// The default parameter values are intended to demonstrate, for final layers in the network,
// cases where scaling factors are asymmetric.
inline void setAllTensorScales(INetworkDefinition* network, float inScales = 2.0f, float outScales = 4.0f)
{
// Ensure that all layer inputs have a scale.
for (int i = 0; i < network->getNbLayers(); i++)
{
auto layer = network->getLayer(i);
for (int j = 0; j < layer->getNbInputs(); j++)
{
ITensor* input{layer->getInput(j)};
// Optional inputs are nullptr here and are from RNN layers.
if (input != nullptr && !input->dynamicRangeIsSet())
{
input->setDynamicRange(-inScales, inScales);
}
}
}
// Ensure that all layer outputs have a scale.
// Tensors that are also inputs to layers are ingored here
// since the previous loop nest assigned scales to them.
for (int i = 0; i < network->getNbLayers(); i++)
{
auto layer = network->getLayer(i);
for (int j = 0; j < layer->getNbOutputs(); j++)
{
ITensor* output{layer->getOutput(j)};
// Optional outputs are nullptr here and are from RNN layers.
if (output != nullptr && !output->dynamicRangeIsSet())
{
// Pooling must have the same input and output scales.
if (layer->getType() == LayerType::kPOOLING)
{
output->setDynamicRange(-inScales, inScales);
}
else
{
output->setDynamicRange(-outScales, outScales);
}
}
}
}
}
inline void setDummyInt8Scales(const IBuilderConfig* c, INetworkDefinition* n)
{
// Set dummy tensor scales if Int8 mode is requested.
if (c->getFlag(BuilderFlag::kINT8))
{
gLogWarning
<< "Int8 calibrator not provided. Generating dummy per tensor scales. Int8 accuracy is not guaranteed."
<< std::endl;
setAllTensorScales(n);
}
}
inline void enableDLA(IBuilder* builder, IBuilderConfig* config, int useDLACore, bool allowGPUFallback = true)
{
if (useDLACore >= 0)
{
if (builder->getNbDLACores() == 0)
{
std::cerr << "Trying to use DLA core " << useDLACore << " on a platform that doesn't have any DLA cores"
<< std::endl;
assert("Error: use DLA core on a platfrom that doesn't have any DLA cores" && false);
}
if (allowGPUFallback)
{
config->setFlag(BuilderFlag::kGPU_FALLBACK);
}
if (!builder->getInt8Mode() && !config->getFlag(BuilderFlag::kINT8))
{
// User has not requested INT8 Mode.
// By default run in FP16 mode. FP32 mode is not permitted.
builder->setFp16Mode(true);
config->setFlag(BuilderFlag::kFP16);
}
config->setDefaultDeviceType(DeviceType::kDLA);
config->setDLACore(useDLACore);
config->setFlag(BuilderFlag::kSTRICT_TYPES);
}
}
inline int parseDLA(int argc, char** argv)
{
for (int i = 1; i < argc; i++)
{
std::string arg(argv[i]);
if (strncmp(argv[i], "--useDLACore=", 13) == 0)
return std::stoi(argv[i] + 13);
}
return -1;
}
inline unsigned int getElementSize(nvinfer1::DataType t)
{
switch (t)
{
case nvinfer1::DataType::kINT32: return 4;
case nvinfer1::DataType::kFLOAT: return 4;
case nvinfer1::DataType::kHALF: return 2;
case nvinfer1::DataType::kBOOL:
case nvinfer1::DataType::kINT8: return 1;
}
throw std::runtime_error("Invalid DataType.");
return 0;
}
inline int64_t volume(const nvinfer1::Dims& d)
{
return std::accumulate(d.d, d.d + d.nbDims, 1, std::multiplies<int64_t>());
}
inline unsigned int elementSize(DataType t)
{
switch (t)
{
case DataType::kINT32:
case DataType::kFLOAT: return 4;
case DataType::kHALF: return 2;
case DataType::kBOOL:
case DataType::kINT8: return 1;
}
return 0;
}
template <typename A, typename B>
inline A divUp(A x, B n)
{
return (x + n - 1) / n;
}
template <int C, int H, int W>
struct PPM
{
std::string magic, fileName;
int h, w, max;
uint8_t buffer[C * H * W];
};
// New vPPM(variable sized PPM) class with variable dimensions.
struct vPPM
{
std::string magic, fileName;
int h, w, max;
std::vector<uint8_t> buffer;
};
struct BBox
{
float x1, y1, x2, y2;
};
template <int C, int H, int W>
inline void readPPMFile(const std::string& filename, samplesCommon::PPM<C, H, W>& ppm)
{
ppm.fileName = filename;
std::ifstream infile(filename, std::ifstream::binary);
assert(infile.is_open() && "Attempting to read from a file that is not open.");
infile >> ppm.magic >> ppm.w >> ppm.h >> ppm.max;
infile.seekg(1, infile.cur);
infile.read(reinterpret_cast<char*>(ppm.buffer), ppm.w * ppm.h * 3);
}
inline void readPPMFile(const std::string& filename, vPPM& ppm, std::vector<std::string>& input_dir)
{
ppm.fileName = filename;
std::ifstream infile(locateFile(filename, input_dir), std::ifstream::binary);
infile >> ppm.magic >> ppm.w >> ppm.h >> ppm.max;
infile.seekg(1, infile.cur);
for (int i = 0; i < ppm.w * ppm.h * 3; ++i)
{
ppm.buffer.push_back(0);
}
infile.read(reinterpret_cast<char*>(&ppm.buffer[0]), ppm.w * ppm.h * 3);
}
template <int C, int H, int W>
inline void writePPMFileWithBBox(const std::string& filename, PPM<C, H, W>& ppm, const BBox& bbox)
{
std::ofstream outfile("./" + filename, std::ofstream::binary);
assert(!outfile.fail());
outfile << "P6"
<< "\n"
<< ppm.w << " " << ppm.h << "\n"
<< ppm.max << "\n";
auto round = [](float x) -> int { return int(std::floor(x + 0.5f)); };
const int x1 = std::min(std::max(0, round(int(bbox.x1))), W - 1);
const int x2 = std::min(std::max(0, round(int(bbox.x2))), W - 1);
const int y1 = std::min(std::max(0, round(int(bbox.y1))), H - 1);
const int y2 = std::min(std::max(0, round(int(bbox.y2))), H - 1);
for (int x = x1; x <= x2; ++x)
{
// bbox top border
ppm.buffer[(y1 * ppm.w + x) * 3] = 255;
ppm.buffer[(y1 * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(y1 * ppm.w + x) * 3 + 2] = 0;
// bbox bottom border
ppm.buffer[(y2 * ppm.w + x) * 3] = 255;
ppm.buffer[(y2 * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(y2 * ppm.w + x) * 3 + 2] = 0;
}
for (int y = y1; y <= y2; ++y)
{
// bbox left border
ppm.buffer[(y * ppm.w + x1) * 3] = 255;
ppm.buffer[(y * ppm.w + x1) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + x1) * 3 + 2] = 0;
// bbox right border
ppm.buffer[(y * ppm.w + x2) * 3] = 255;
ppm.buffer[(y * ppm.w + x2) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + x2) * 3 + 2] = 0;
}
outfile.write(reinterpret_cast<char*>(ppm.buffer), ppm.w * ppm.h * 3);
}
inline void writePPMFileWithBBox(const std::string& filename, vPPM ppm, std::vector<BBox>& dets)
{
std::ofstream outfile("./" + filename, std::ofstream::binary);
assert(!outfile.fail());
outfile << "P6"
<< "\n"
<< ppm.w << " " << ppm.h << "\n"
<< ppm.max << "\n";
auto round = [](float x) -> int { return int(std::floor(x + 0.5f)); };
for (auto bbox : dets)
{
for (int x = int(bbox.x1); x < int(bbox.x2); ++x)
{
// bbox top border
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3] = 255;
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(round(bbox.y1) * ppm.w + x) * 3 + 2] = 0;
// bbox bottom border
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3] = 255;
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3 + 1] = 0;
ppm.buffer[(round(bbox.y2) * ppm.w + x) * 3 + 2] = 0;
}
for (int y = int(bbox.y1); y < int(bbox.y2); ++y)
{
// bbox left border
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3] = 255;
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + round(bbox.x1)) * 3 + 2] = 0;
// bbox right border
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3] = 255;
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3 + 1] = 0;
ppm.buffer[(y * ppm.w + round(bbox.x2)) * 3 + 2] = 0;
}
}
outfile.write(reinterpret_cast<char*>(&ppm.buffer[0]), ppm.w * ppm.h * 3);
}
class TimerBase
{
public:
virtual void start() {}
virtual void stop() {}
float microseconds() const noexcept
{
return mMs * 1000.f;
}
float milliseconds() const noexcept
{
return mMs;
}
float seconds() const noexcept
{
return mMs / 1000.f;
}
void reset() noexcept
{
mMs = 0.f;
}
protected:
float mMs{0.0f};
};
class GpuTimer : public TimerBase
{
public:
GpuTimer(cudaStream_t stream)
: mStream(stream)
{
CHECK(cudaEventCreate(&mStart));
CHECK(cudaEventCreate(&mStop));
}
~GpuTimer()
{
CHECK(cudaEventDestroy(mStart));
CHECK(cudaEventDestroy(mStop));
}
void start()
{
CHECK(cudaEventRecord(mStart, mStream));
}
void stop()
{
CHECK(cudaEventRecord(mStop, mStream));
float ms{0.0f};
CHECK(cudaEventSynchronize(mStop));
CHECK(cudaEventElapsedTime(&ms, mStart, mStop));
mMs += ms;
}
private:
cudaEvent_t mStart, mStop;
cudaStream_t mStream;
}; // class GpuTimer
template <typename Clock>
class CpuTimer : public TimerBase
{
public:
using clock_type = Clock;
void start()
{
mStart = Clock::now();
}
void stop()
{
mStop = Clock::now();
mMs += std::chrono::duration<float, std::milli>{mStop - mStart}.count();
}
private:
std::chrono::time_point<Clock> mStart, mStop;
}; // class CpuTimer
using PreciseCpuTimer = CpuTimer<std::chrono::high_resolution_clock>;
inline std::vector<std::string> splitString(std::string str, char delimiter = ',')
{
std::vector<std::string> splitVect;
std::stringstream ss(str);
std::string substr;
while (ss.good())
{
getline(ss, substr, delimiter);
splitVect.emplace_back(std::move(substr));
}
return splitVect;
}
// Return m rounded up to nearest multiple of n
inline int roundUp(int m, int n)
{
return ((m + n - 1) / n) * n;
}
inline int getC(const Dims& d)
{
return d.nbDims >= 3 ? d.d[d.nbDims - 3] : 1;
}
inline int getH(const Dims& d)
{
return d.nbDims >= 2 ? d.d[d.nbDims - 2] : 1;
}
inline int getW(const Dims& d)
{
return d.nbDims >= 1 ? d.d[d.nbDims - 1] : 1;
}
inline void loadLibrary(const std::string& path)
{
#ifdef _MSC_VER
void* handle = LoadLibrary(path.c_str());
#else
void* handle = dlopen(path.c_str(), RTLD_LAZY);
#endif
if (handle == nullptr)
{
#ifdef _MSC_VER
gLogError << "Could not load plugin library: " << path << std::endl;
#else
gLogError << "Could not load plugin library: " << path << ", due to: " << dlerror() << std::endl;
#endif
}
}
} // namespace samplesCommon
inline std::ostream& operator<<(std::ostream& os, const nvinfer1::Dims& dims)
{
os << "(";
for (int i = 0; i < dims.nbDims; ++i)
{
os << (i ? ", " : "") << dims.d[i];
}
return os << ")";
}
#endif // TENSORRT_COMMON_H