diff --git a/.gitignore b/.gitignore
new file mode 100755
index 0000000..beffa3f
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,6 @@
+__pycache__
+
+exp/
+data/
+
+WavLM-Base+.pt
\ No newline at end of file
diff --git a/DatasetLoader.py b/DatasetLoader.py
new file mode 100644
index 0000000..3b5e218
--- /dev/null
+++ b/DatasetLoader.py
@@ -0,0 +1,309 @@
+ #! /usr/bin/python
+# -*- encoding: utf-8 -*-
+
+import torch
+import numpy
+import random
+import pdb
+import os
+import threading
+import time
+import math
+import glob
+# import soundfile
+from scipy import signal
+import soundfile
+from torch.utils.data import Dataset, DataLoader
+import torch.distributed as dist
+
+def round_down(num, divisor):
+ return num - (num%divisor)
+
+def worker_init_fn(worker_id):
+ numpy.random.seed(numpy.random.get_state()[1][0] + worker_id)
+
+
+def loadWAV(filename, max_frames, evalmode=True, num_eval=5):
+
+ # Maximum audio length
+ max_audio = max_frames * 160 + 240
+
+ # Read wav file and convert to torch tensor
+ audio, sample_rate = soundfile.read(filename)
+
+
+ audiosize = audio.shape[0]
+
+ if audiosize <= max_audio:
+ shortage = max_audio - audiosize + 1
+ audio = numpy.pad(audio, (0, shortage), 'wrap')
+ audiosize = audio.shape[0]
+
+ if evalmode:
+ startframe = numpy.linspace(0,audiosize-max_audio,num=num_eval)
+ else:
+ startframe = numpy.array([numpy.int64(random.random()*(audiosize-max_audio))])
+
+ feats = []
+ if evalmode and max_frames == 0:
+ feats.append(audio)
+ else:
+ for asf in startframe:
+ feats.append(audio[int(asf):int(asf)+max_audio])
+
+ feat = numpy.stack(feats,axis=0).astype(float)
+
+ return feat;
+
+class AugmentWAV(object):
+
+ def __init__(self, musan_path, rir_path, max_frames):
+
+ self.max_frames = max_frames
+ self.max_audio = max_audio = max_frames * 160 + 240
+
+ self.noisetypes = ['noise','speech','music']
+
+ self.noisesnr = {'noise':[0,15],'speech':[13,20],'music':[5,15]}
+ self.numnoise = {'noise':[1,1], 'speech':[3,8], 'music':[1,1] }
+ self.noiselist = {}
+
+ augment_files = glob.glob(os.path.join(musan_path,'*/*/*.wav'));
+
+ for file in augment_files:
+ if not file.split('/')[-3] in self.noiselist:
+ self.noiselist[file.split('/')[-3]] = []
+ self.noiselist[file.split('/')[-3]].append(file)
+
+ self.rir_files = glob.glob(os.path.join(rir_path,'*/*/*.wav'));
+
+ def additive_noise(self, noisecat, audio):
+
+ clean_db = 10 * numpy.log10(numpy.mean(audio ** 2)+1e-4)
+
+ numnoise = self.numnoise[noisecat]
+ noiselist = random.sample(self.noiselist[noisecat], random.randint(numnoise[0],numnoise[1]))
+
+ noises = []
+
+ for noise in noiselist:
+
+ noiseaudio = loadWAV(noise, self.max_frames, evalmode=False)
+ noise_snr = random.uniform(self.noisesnr[noisecat][0],self.noisesnr[noisecat][1])
+ noise_db = 10 * numpy.log10(numpy.mean(noiseaudio[0] ** 2)+1e-4)
+ noises.append(numpy.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio)
+
+ return numpy.sum(numpy.concatenate(noises,axis=0),axis=0,keepdims=True) + audio
+
+ def reverberate(self, audio):
+
+ rir_file = random.choice(self.rir_files)
+
+ rir, fs = soundfile.read(rir_file)
+ rir = numpy.expand_dims(rir.astype(float),0)
+ rir = rir / numpy.sqrt(numpy.sum(rir**2))
+
+ return signal.convolve(audio, rir, mode='full')[:,:self.max_audio]
+
+
+class train_dataset_loader(Dataset):
+ def __init__(self, train_list, augment, musan_path, rir_path, max_frames, train_path, **kwargs):
+
+ self.augment_wav = AugmentWAV(musan_path=musan_path, rir_path=rir_path, max_frames = max_frames)
+
+ self.train_list = train_list
+ self.max_frames = max_frames;
+ self.musan_path = musan_path
+ self.rir_path = rir_path
+ self.augment = augment
+
+ # Read training files
+ with open(train_list) as dataset_file:
+ lines = dataset_file.readlines();
+
+ # Make a dictionary of ID names and ID indices
+ dictkeys = list(set([x.split()[0] for x in lines]))
+ dictkeys.sort()
+ dictkeys = { key : ii for ii, key in enumerate(dictkeys) }
+
+ # Parse the training list into file names and ID indices
+ self.data_list = []
+ self.data_label = []
+
+ for lidx, line in enumerate(lines):
+ data = line.strip().split();
+
+ speaker_label = dictkeys[data[0]];
+ filename = os.path.join(train_path,data[1]);
+
+ self.data_label.append(speaker_label)
+ self.data_list.append(filename)
+
+
+ def __getitem__(self, indices):
+
+ feat_clean = []
+ feat = []
+
+ for index in indices:
+ try:
+ audio_clean = loadWAV(self.data_list[index], self.max_frames, evalmode=False)
+ except:
+ print(self.data_list[index])
+
+ if len(audio_clean.shape) == 3:
+ print(self.data_list[index])
+
+ if self.augment:
+ augtype = random.randint(0,5)
+ if augtype == 0:
+ audio = audio_clean
+ elif augtype == 1:
+ audio = self.augment_wav.reverberate(audio_clean)
+ elif augtype == 2:
+ audio = self.augment_wav.additive_noise('music',audio_clean)
+ elif augtype == 3:
+ audio = self.augment_wav.additive_noise('speech',audio_clean)
+ elif augtype == 4:
+ audio = self.augment_wav.additive_noise('noise',audio_clean)
+ elif augtype == 5:
+ audio = self.augment_wav.additive_noise('speech',audio_clean)
+ audio = self.augment_wav.additive_noise('music',audio_clean)
+
+ feat_clean.append(audio_clean)
+ feat.append(audio)
+
+ feat_clean = numpy.concatenate(feat_clean, axis=0)
+ feat = numpy.concatenate(feat, axis=0)
+
+ return torch.FloatTensor(feat_clean), torch.FloatTensor(feat), self.data_label[index], self.data_list[index]
+
+ def __len__(self):
+ return len(self.data_list)
+
+
+
+class test_dataset_loader(Dataset):
+ def __init__(self, test_list, test_path, eval_frames, num_eval, **kwargs):
+ self.max_frames = eval_frames;
+ self.num_eval = num_eval
+ self.test_path = test_path
+ self.test_list = test_list
+
+ def __getitem__(self, index):
+ # print(self.test_list[index])
+ audio = loadWAV(os.path.join(self.test_path,self.test_list[index]), self.max_frames, evalmode=True, num_eval=self.num_eval)
+
+ audio2 = loadWAV(os.path.join(self.test_path,self.test_list[index]), 0, evalmode=True, num_eval=self.num_eval)
+
+ return torch.FloatTensor(audio), torch.FloatTensor(audio2), self.test_list[index]
+ # return torch.FloatTensor(audio2), self.test_list[index]
+
+ def __len__(self):
+ return len(self.test_list)
+
+
+class train_dataset_sampler(torch.utils.data.Sampler):
+ def __init__(self, data_source, nPerSpeaker, max_seg_per_spk, batch_size, distributed, seed, **kwargs):
+
+ self.data_label = data_source.data_label;
+ self.nPerSpeaker = nPerSpeaker;
+ self.max_seg_per_spk = max_seg_per_spk;
+ self.batch_size = batch_size;
+ self.epoch = 0;
+ self.seed = seed;
+ self.distributed = distributed;
+
+ def __iter__(self):
+
+ g = torch.Generator()
+ g.manual_seed(self.seed + self.epoch)
+ indices = torch.randperm(len(self.data_label), generator=g).tolist()
+
+ data_dict = {}
+
+ # Sort into dictionary of file indices for each ID
+ for index in indices:
+ speaker_label = self.data_label[index]
+ if not (speaker_label in data_dict):
+ data_dict[speaker_label] = [];
+ data_dict[speaker_label].append(index);
+
+
+ ## Group file indices for each class
+ dictkeys = list(data_dict.keys());
+ dictkeys.sort()
+
+ lol = lambda lst, sz: [lst[i:i+sz] for i in range(0, len(lst), sz)]
+
+ flattened_list = []
+ flattened_label = []
+
+ for findex, key in enumerate(dictkeys):
+ data = data_dict[key]
+ numSeg = round_down(min(len(data),self.max_seg_per_spk),self.nPerSpeaker)
+
+ rp = lol(numpy.arange(numSeg),self.nPerSpeaker)
+ flattened_label.extend([findex] * (len(rp)))
+ for indices in rp:
+ flattened_list.append([data[i] for i in indices])
+
+ ## Mix data in random order
+ mixid = torch.randperm(len(flattened_label), generator=g).tolist()
+ mixlabel = []
+ mixmap = []
+
+ ## Prevent two pairs of the same speaker in the same batch
+ for ii in mixid:
+ startbatch = round_down(len(mixlabel), self.batch_size)
+ if flattened_label[ii] not in mixlabel[startbatch:]:
+ mixlabel.append(flattened_label[ii])
+ mixmap.append(ii)
+
+ mixed_list = [flattened_list[i] for i in mixmap]
+
+ ## Divide data to each GPU
+ if self.distributed:
+ total_size = round_down(len(mixed_list), self.batch_size * dist.get_world_size())
+ start_index = int ( ( dist.get_rank() ) / dist.get_world_size() * total_size )
+ end_index = int ( ( dist.get_rank() + 1 ) / dist.get_world_size() * total_size )
+ self.num_samples = end_index - start_index
+ return iter(mixed_list[start_index:end_index])
+ else:
+ total_size = round_down(len(mixed_list), self.batch_size)
+ self.num_samples = total_size
+ return iter(mixed_list[:total_size])
+
+
+ def __len__(self) -> int:
+ return self.num_samples
+
+ def set_epoch(self, epoch: int) -> None:
+ self.epoch = epoch
+
+
+if __name__ == '__main__':
+ train_dataset = train_dataset_loader(train_list='/mnt/proj3/open-24-5/pengjy_new/WavLM_Adapter/CNCeleb_lst/CNCeleb_trainlist_200spk.txt',
+ augment=False,
+ musan_path='/mnt/proj3/open-24-5/pengjy_new/musan_split/',
+ rir_path='/mnt/proj3/open-24-5/plchot/data_augment/16kHz/simulated_rirs/',
+ max_frames=300,
+ train_path='/mnt/proj3/open-24-5/pengjy_new/Data/CN-Celeb_flac/data',
+ )
+
+ train_sampler = train_dataset_sampler(train_dataset, nPerSpeaker=1, max_seg_per_spk=500, batch_size=100, distributed=False,seed=120)
+ # train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
+
+ train_loader = torch.utils.data.DataLoader(
+ train_dataset,
+ batch_size=100,
+ num_workers=10,
+ sampler=train_sampler,
+ pin_memory=True,
+ drop_last=True,
+ )
+ for data, data_label in train_loader:
+ print(data.shape)
+ data = data.transpose(1,0)
+ print(data.shape)
+ quit()
\ No newline at end of file
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..d8f84cb
--- /dev/null
+++ b/README.md
@@ -0,0 +1,96 @@
+# wavlm_ssl_sv
+
+This repository contains the source code of the article **Towards Supervised Performance on Speaker Verification with Self-Supervised Learning by Leveraging Large-Scale ASR Models** (INTERSPEECH 2024) [[arXiv]](https://arxiv.org/pdf/2406.02285).
+
+The proposed framework fine-tunes a pre-trained **WavLM** using pseudo-labels, generated through **Self-Supervised Learning** (SSL), for **Speaker Verification** (SV). Initial pseudo-labels are derived from an SSL DINO-based model and are iteratively refined by clustering the model embeddings.
+
+
+
+
+
+Our method achieves **0.99% EER on VoxCeleb1-O**, establishing the new SOTA on Speaker Verification with SSL.
+
+*Please refer to the article for more details on the implementation and a comparative study with other works.*
+
+---
+
+## Usage
+
+### Installation
+
+- Install dependencies with `pip install -r requirements.txt`.
+- Prepare data for VoxCeleb, MUSAN, and RIR datasets following [voxceleb_trainer](https://github.com/clovaai/voxceleb_trainer#data-preparation).
+- Download [WavLM-Base+ model](https://github.com/microsoft/unilm/tree/master/wavlm) and place `WavLM-Base+.pt` at the root folder.
+
+### Training
+
+#### Step 1: Extract DINO speaker embeddings
+
+The code to train the DINO model is not currently provided. We recommend using [sslsv](https://github.com/theolepage/sslsv) or [3D-Speaker](https://github.com/modelscope/3D-Speaker) to extract initial speaker embeddings.
+
+Alternatively, you can directly download the DINO embeddings we used for our system: [dino_vox2_embeddings.pt](https://drive.google.com/file/d/1YnxrMIgrr6NQgZ3Hv2_5YdP5W8xfdyLH/view?usp=sharing).
+
+*Note: the embeddings file must be a `Dict[str, torch.Tensor]` representing all VoxCeleb2 samples with the following format for keys: `id00012/21Uxsk56VDQ/00001.wav`.*
+
+#### Step 2: Generate pseudo-labels
+
+```bash
+python pseudo_labeling.py PATH_TO_EMBEDDINGS_FILE PATH_TO_PL_FILE
+```
+
+#### Step 3: Fine-tune WavLM MHFA
+
+```bash
+python trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc.yaml --train_list PATH_TO_PL_FILE --distributed
+```
+
+#### Iterative process
+
+1. Extract embeddings from the WavLM MHFA model:
+ `python trainSpeakerNet_Eval.py --config configs/wavlm_mhfa_dlg_lc.yaml --generate_embeddings --embeddings_path PATH_TO_EMBEDDINGS_FILE`.
+
+2. Repeat steps 2 and 3. *Make sure to change `save_path` in the config to avoid overwriting the existing model.*
+
+#### Step 4: Large-Margin Fine-Tuning
+
+1. Copy the latest model checkpoint to `exp/wavlm_mhfa_dlg_lc_lmft/model` to resume training.
+
+2. Start training: `python trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc_lmft.yaml --train_list PATH_TO_PL_FILE --distributed`.
+
+### Evaluation
+
+```bash
+python trainSpeakerNet_Eval.py --config configs/wavlm_mhfa_dlg_lc_lmft.yaml --eval
+```
+
+### Model weights
+
+The checkpoint of our best model reaching 0.99% EER on VoxCeleb1-O is available for download: [`wavlm_mhfa_dlg_lc_lmft`](https://drive.google.com/drive/folders/1ygZPvdGwepWDDfIQp6aPRktt2QxLt6cE?usp=drive_link).
+
+---
+
+## Acknowledgements
+
+This repository contains third-party components and code adapted from other open-source projects, including: [SLT22_MultiHead-Factorized-Attentive-Pooling](https://github.com/JunyiPeng00/SLT22_MultiHead-Factorized-Attentive-Pooling) and [Loss-Gated-Learning](https://github.com/TaoRuijie/Loss-Gated-Learning).
+
+---
+
+## Citation
+
+If you use this project, please consider starring this repository on GitHub and citing the following paper.
+
+```BibTeX
+@InProceedings{miara2024WavLMSSLSV,
+ author = {Miara, Victor and Lepage, Théo and Dehak, Réda},
+ booktitle = {INTERSPEECH},
+ title = {Towards Supervised Performance on Speaker Verification with Self-Supervised Learning by Leveraging Large-Scale ASR Models},
+ year = {2024},
+ url = {https://arxiv.org/abs/2406.02285},
+}
+```
+
+---
+
+## License
+
+This project is released under the [MIT License](https://github.com/theolepage/wavlm_ssl_sv/blob/main/LICENSE.md).
diff --git a/SpeakerNet.py b/SpeakerNet.py
new file mode 100644
index 0000000..d5c10d3
--- /dev/null
+++ b/SpeakerNet.py
@@ -0,0 +1,372 @@
+#!/usr/bin/python
+#-*- coding: utf-8 -*-
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import numpy, math, pdb, sys, random
+import time, os, itertools, shutil, importlib
+from tuneThreshold import tuneThresholdfromScore
+from DatasetLoader import test_dataset_loader, loadWAV
+import pickle
+import numpy as np
+import time
+from tqdm import tqdm
+import soundfile
+
+
+class WrappedModel(nn.Module):
+
+ ## The purpose of this wrapper is to make the model structure consistent between single and multi-GPU
+
+ def __init__(self, model):
+ super(WrappedModel, self).__init__()
+ self.module = model
+
+ def forward(self, x, x_clean=None, label=None,l2_reg_dict=None, epoch=-1):
+ return self.module(x, x_clean, label, epoch=epoch)
+
+
+class SpeakerNet(nn.Module):
+
+ def __init__(self, model, optimizer, trainfunc, nPerSpeaker, **kwargs):
+ super(SpeakerNet, self).__init__()
+
+ SpeakerNetModel = importlib.import_module('models.'+model).__getattribute__('MainModel')
+ self.__S__ = SpeakerNetModel(**kwargs);
+
+ LossFunction = importlib.import_module('loss.'+trainfunc).__getattribute__('LossFunction')
+ self.__L__ = LossFunction(**kwargs);
+
+ self.nPerSpeaker = nPerSpeaker
+ self.weight_finetuning_reg = kwargs['weight_finetuning_reg']
+
+
+ def forward(self, data, data_clean=None, label=None, l2_reg_dict=None, epoch=-1):
+ if label is None:
+ data_reshape = data[0].cuda()
+ outp = self.__S__.forward([data_reshape, data[1]])
+ return outp
+ elif len(data) == 3 and data[2] == "gen_ps":
+ data_reshape = data[0].reshape(-1,data[0].size()[-1]).cuda()
+ outp = self.__S__.forward([data_reshape, data[1]])
+ pseudo_labels = self.__L__.get_pseudo_labels(outp, label)
+ return pseudo_labels
+ else:
+ data_reshape = data[0].reshape(-1,data[0].size()[-1]).cuda()
+ data_clean_reshape = data_clean.reshape(-1,data_clean.size()[-1]).cuda()
+ outp = self.__S__.forward([data_reshape, data[1]])
+ outp_clean = self.__S__.forward([data_clean_reshape, data[1]])
+ nloss, prec1, ce = self.__L__.forward(outp, outp_clean, label, epoch)
+
+ if l2_reg_dict is not None:
+ Learned_dict = l2_reg_dict
+ l2_reg = 0
+ for name,param in self.__S__.model.named_parameters():
+ if name in Learned_dict:
+ l2_reg = l2_reg + torch.norm(param-Learned_dict[name].cuda(),2)
+ tloss = nloss/nloss.detach() + self.weight_finetuning_reg*l2_reg/(l2_reg.detach()+1e-5)
+ else:
+ tloss = nloss
+ print("Without L2 Reg")
+
+ return tloss, prec1, nloss, ce
+
+
+
+
+class ModelTrainer(object):
+
+ def __init__(self, speaker_model, optimizer, scheduler, gpu, mixedprec, **kwargs):
+
+ self.__model__ = speaker_model
+
+ WavLM_params = list(map(id, self.__model__.module.__S__.model.parameters()))
+ Backend_params = filter(lambda p: id(p) not in WavLM_params, self.__model__.module.parameters())
+ self.path = kwargs['pretrained_model_path']
+
+ Optimizer = importlib.import_module('optimizer.'+optimizer).__getattribute__('Optimizer')
+
+ # Define the initial param groups
+ param_groups = [{'params': Backend_params, 'lr': kwargs['LR_MHFA']}]
+
+ # Extract the encoder layers
+ encoder_layers = self.__model__.module.__S__.model.encoder.layers
+
+ # Iterate over the encoder layers to create param groups
+ for i in range(12): # Assuming 12 layers from 0 to 11 (for BASE model, when it comes to LARGE model, 12->24)
+ lr = kwargs['LR_Transformer'] * (kwargs['LLRD_factor'] ** i)
+ param_groups.append({'params': encoder_layers[i].parameters(), 'lr': lr})
+
+ # Initialize the optimizer with these param groups
+ self.__optimizer__ = Optimizer(param_groups, **kwargs)
+
+ # self.__optimizer__ = Optimizer(self.__model__.parameters(), **kwargs)
+ # print('scheduler.'+scheduler)
+ Scheduler = importlib.import_module('scheduler.'+scheduler).__getattribute__('Scheduler')
+ # print(kwargs)
+ try:
+ self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, **kwargs)
+ except:
+ self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, lr_decay=0.9, **kwargs)
+
+ # self.scaler = GradScaler()
+
+ self.gpu = gpu
+
+ self.mixedprec = mixedprec
+ print("Mix prec: %s"%(self.mixedprec))
+
+ assert self.lr_step in ['epoch', 'iteration']
+
+ # ## ===== ===== ===== ===== ===== ===== ===== =====
+ # ## Train network
+ # ## ===== ===== ===== ===== ===== ===== ===== =====
+
+ def update_lgl_threshold(self, lgl_threshold):
+ self.__model__.module.__L__.lgl_threshold = lgl_threshold
+
+ # """
+ def train_network(self, loader, loss_vals_path, epoch, verbose):
+ if torch.distributed.is_initialized():
+ rank = torch.distributed.get_rank()
+ unique_loss_vals_path = f"{loss_vals_path.split('.')[0]}_rank{rank}.txt"
+ else:
+ unique_loss_vals_path = loss_vals_path
+
+ self.__model__.train();
+
+ stepsize = loader.batch_size;
+
+ counter = 0;
+ index = 0;
+ loss = 0;
+ top1 = 0 # EER or accuracy
+
+ tstart = time.time()
+ Learned_dict = {}
+ checkpoint = torch.load(self.path)
+ for name, param in checkpoint['model'].items():
+ if 'w2v_encoder.w2v_model.' in name:
+ newname = name.replace('w2v_encoder.w2v_model.', '')
+ else:
+ newname = name
+ Learned_dict[newname] = param;
+
+ # for data_clean, data, data_label, data_path in loader:
+ # telapsed = time.time() - tstart
+ # tstart = time.time()
+ # counter += 1;
+ # index += stepsize
+ # sys.stdout.write("\rProcessing (%d) "%(index));
+ # sys.stdout.write("Loss %f TEER/TAcc %2.3f%% - %.2f Hz "%(loss/counter, top1/counter, stepsize/telapsed));
+ # if counter % 100 == 0:
+ # sys.stdout.flush()
+
+ with open(unique_loss_vals_path, 'w') as loss_vals_file:
+ for data_clean, data, data_label, data_path in loader:
+ data_clean = data_clean.transpose(1,0)
+ data = data.transpose(1,0)
+ self.__model__.zero_grad()
+ label = torch.LongTensor(data_label).cuda()
+
+ nloss, prec1, spkloss, ce = self.__model__([data,"train"], data_clean, label, Learned_dict, epoch=epoch)
+
+ for ce_val, path in zip(ce.detach().cpu().numpy(), data_path):
+ loss_vals_file.write(f'{ce_val} {"/".join(path.split("/")[5:])}\n')
+
+ nloss.backward()
+
+ self.__optimizer__.step();
+
+ loss += spkloss.detach().cpu()
+ top1 += prec1.detach().cpu()
+
+
+ counter += 1;
+ index += stepsize;
+
+
+
+ telapsed = time.time() - tstart
+ tstart = time.time()
+
+ if verbose:
+ sys.stdout.write("\rProcessing (%d) "%(index));
+ sys.stdout.write("Loss %f TEER/TAcc %2.3f%% - %.2f Hz "%(loss/counter, top1/counter, stepsize/telapsed));
+ sys.stdout.flush();
+
+ if self.lr_step == 'iteration': self.__scheduler__.step()
+
+ if self.lr_step == 'epoch': self.__scheduler__.step()
+
+ sys.stdout.write("\n");
+ return (loss/counter, top1/counter);
+ # """
+
+ ## ===== ===== ===== ===== ===== ===== ===== =====
+ ## Evaluate from list
+ ## ===== ===== ===== ===== ===== ===== ===== =====
+
+ def evaluateFromList(self, test_list, test_path, nDataLoaderThread, print_interval=10, num_eval=15, **kwargs):
+
+ self.__model__.eval();
+
+ lines = []
+ files = []
+ feats = {}
+ tstart = time.time()
+
+ ## Read all lines
+ with open(test_list) as f:
+ lines = f.readlines()
+
+ ## Get a list of unique file names
+ files = sum([x.strip().split()[-2:] for x in lines],[])
+ setfiles = list(set(files))
+ setfiles.sort()
+
+ ## Define test data loader
+ test_dataset = test_dataset_loader(setfiles, test_path, num_eval=num_eval, **kwargs)
+ test_loader = torch.utils.data.DataLoader(
+ test_dataset,
+ batch_size=1,
+ shuffle=False,
+ num_workers=nDataLoaderThread,
+ drop_last=False,
+ )
+ ref_feat_list = []
+ ref_feat_2_list = []
+ max_len = 0
+ forward = 0
+ ## Extract features for every image
+ for idx, data in enumerate(test_loader):
+
+
+ inp1 = data[0][0].cuda()
+ inp2 = data[1][0].cuda()
+ telapsed_2 = time.time()
+ b,utt_l = inp2.shape
+ if utt_l > max_len:
+ max_len = utt_l
+ ref_feat = self.__model__([inp1, "test"]).cuda()
+ ref_feat = ref_feat.detach().cpu()
+ ref_feat_2 = self.__model__([inp2[:,:700000], "test"]).cuda() # The reason why here is set to 700000 is due to GPU memory size.
+ ref_feat_2 = ref_feat_2.detach().cpu()
+
+ feats[data[2][0]] = [ref_feat,ref_feat_2]
+
+ ref_feat_list.extend(ref_feat.numpy())
+ ref_feat_2_list.extend(ref_feat_2.numpy())
+
+ telapsed = time.time() - tstart
+ forward = forward + time.time() - telapsed_2
+
+ if idx % print_interval == 0:
+ sys.stdout.write("\rReading %d of %d: %.2f Hz, forward speed: %.2f Hz, embedding size %d, max_len %d"%(idx,len(setfiles),idx/telapsed,idx/forward, ref_feat.size()[-1],max_len));
+
+ print('')
+ all_scores = [];
+ all_labels = [];
+ all_trials = [];
+ all_scores_1 = [];
+ all_scores_2 = [];
+
+ tstart = time.time()
+
+ ref_feat_list = numpy.array(ref_feat_list)
+ ref_feat_2_list = numpy.array(ref_feat_2_list)
+
+ ref_feat_list_mean = 0
+ ref_feat_2_list_mean = 0
+
+
+ ## Read files and compute all scores
+ for idx, line in enumerate(lines):
+
+ data = line.split();
+
+ ## Append random label if missing
+ if len(data) == 2: data = [random.randint(0,1)] + data
+
+ ref_feat,ref_feat_2 = feats[data[1]]
+ com_feat,com_feat_2 = feats[data[2]]
+
+ # if self.__model__.module.__L__.test_normalize:
+ ref_feat = F.normalize(ref_feat-ref_feat_list_mean, p=2, dim=1) # B, D
+ com_feat = F.normalize(com_feat-ref_feat_list_mean, p=2, dim=1)
+ ref_feat_2 = F.normalize(ref_feat_2-ref_feat_2_list_mean, p=2, dim=1) # B, D
+ com_feat_2 = F.normalize(com_feat_2-ref_feat_2_list_mean, p=2, dim=1)
+
+ score_1 = torch.mean(torch.matmul(ref_feat, com_feat.T)) # higher is positive
+ score_2 = torch.mean(torch.matmul(ref_feat_2, com_feat_2.T))
+ score = (score_1 + score_2) / 2
+ score = score.detach().cpu().numpy()
+
+ all_scores.append(score);
+ all_scores_1.append(score_1);
+ all_scores_2.append(score_2);
+
+ all_labels.append(int(data[0]));
+ all_trials.append(data[1]+" "+data[2])
+
+ if idx % (10*print_interval) == 0:
+ telapsed = time.time() - tstart
+ sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed));
+ sys.stdout.flush();
+
+ print('')
+
+ return (all_scores, all_labels, all_trials,all_scores_1,all_scores_2);
+
+ def generate_embeddings(self, wav_files, output, device):
+ res = {}
+
+ for file in tqdm(wav_files):
+ wav, sr = soundfile.read(file)
+ wav = torch.from_numpy(wav).float().to(device)
+
+ with torch.no_grad():
+ embedding = self.__model__([wav.unsqueeze(0), "test"]).detach().cpu()
+
+ key = '/'.join(file.split('/')[-3:])
+ res[key] = embedding
+
+ torch.save(res, output)
+
+ def saveParameters(self, path):
+ torch.save(self.__model__.module.state_dict(), path);
+
+
+ ## ===== ===== ===== ===== ===== ===== ===== =====
+ ## Load parameters
+ ## ===== ===== ===== ===== ===== ===== ===== =====
+
+ def loadParameters(self, path):
+
+ self_state = self.__model__.module.state_dict();
+ loaded_state = torch.load(path, map_location="cuda:%d"%self.gpu);
+ # loaded_state = torch.load(path, map_location="cpu");
+
+
+
+ for name, param in loaded_state.items():
+ origname = name;
+
+ if name not in self_state:
+ name = name.replace("module.", "");
+
+ if name not in self_state:
+ print("%s is not in the model."%origname);
+ continue;
+
+ if self_state[name].size() != loaded_state[origname].size():
+ print("Wrong parameter length: %s, model: %s, loaded: %s"%(origname, self_state[name].size(), loaded_state[origname].size()));
+ continue;
+
+ self_state[name].copy_(param);
+
+
+
+
+
diff --git a/configs/wavlm_mhfa_dlg_lc.yaml b/configs/wavlm_mhfa_dlg_lc.yaml
new file mode 100644
index 0000000..d3a3d9e
--- /dev/null
+++ b/configs/wavlm_mhfa_dlg_lc.yaml
@@ -0,0 +1,33 @@
+max_frames: 300
+max_epoch: 15
+batch_size: 120
+margin: 0.2
+
+eval_frames: 400
+augment: True
+
+## Training details
+trainfunc: aamsoftmax
+
+scale: 30
+
+lr_decay: 0.95
+
+pretrained_model_path: WavLM-Base+.pt
+weight_finetuning_reg: 0.01
+LLRD_factor: 1.0
+LR_Transformer: 2e-5
+LR_MHFA: 5e-3
+
+## Loss functions
+nClasses: 7500
+
+## Load and save
+save_path: exp/wavlm_mhfa_dlg_lc
+# save_path: exp/wavlm_mhfa_dlg_lc_iter2
+
+## Model definition
+model: Baseline.Spk_Encoder
+
+nOut: 256
+port: 6754
diff --git a/configs/wavlm_mhfa_dlg_lc_lmft.yaml b/configs/wavlm_mhfa_dlg_lc_lmft.yaml
new file mode 100644
index 0000000..d182dee
--- /dev/null
+++ b/configs/wavlm_mhfa_dlg_lc_lmft.yaml
@@ -0,0 +1,33 @@
+max_frames: 600
+max_epoch: 5
+batch_size: 50
+margin: 0.5
+
+eval_frames: 400
+augment: True
+
+## Training details
+trainfunc: aamsoftmax
+
+scale: 30
+
+lr: 5e-4
+lr_decay: 0.95
+
+pretrained_model_path: WavLM-Base+.pt
+weight_finetuning_reg: 0.01
+LLRD_factor: 1.0
+LR_Transformer: 2e-5
+LR_MHFA: 5e-3
+
+## Loss functions
+nClasses: 7500
+
+## Load and save
+save_path: exp/wavlm_mhfa_dlg_lc_lmft
+
+## Model definition
+model: Baseline.Spk_Encoder
+
+nOut: 256
+port: 6754
diff --git a/loss/aamsoftmax.py b/loss/aamsoftmax.py
new file mode 100644
index 0000000..27065b0
--- /dev/null
+++ b/loss/aamsoftmax.py
@@ -0,0 +1,140 @@
+#! /usr/bin/python
+# -*- encoding: utf-8 -*-
+# Adapted from https://github.com/wujiyang/Face_Pytorch (Apache License)
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import time, pdb, numpy, math
+from utils import accuracy
+import numpy as np
+
+class LossFunction(nn.Module):
+ def __init__(self, nOut, nClasses, margin=0.3, scale=15, easy_margin=False, **kwargs):
+ super(LossFunction, self).__init__()
+
+ self.test_normalize = True
+
+ self.m = margin
+ self.s = scale
+ self.in_feats = nOut
+ self.weight = torch.nn.Parameter(torch.FloatTensor(nClasses, nOut), requires_grad=True)
+ # self.ce = nn.CrossEntropyLoss()
+ self.ce = nn.CrossEntropyLoss(reduction='none') # return loss per sample
+ nn.init.xavier_normal_(self.weight, gain=1)
+
+ self.easy_margin = easy_margin
+ self.cos_m = math.cos(self.m)
+ self.sin_m = math.sin(self.m)
+
+ # make the function cos(theta+m) monotonic decreasing while theta in [0°,180°]
+ self.th = math.cos(math.pi - self.m)
+ self.mm = math.sin(math.pi - self.m) * self.m
+
+ self.lgl_threshold = 1e6
+ self.lc_threshold = 0.5
+
+ print('Initialised AAMSoftmax margin %.3f scale %.3f'%(self.m,self.s))
+
+ def _forward(self, x, label):
+ # cos(theta)
+ cosine = F.linear(F.normalize(x), F.normalize(self.weight))
+ # cos(theta + m)
+ sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1))
+ phi = cosine * self.cos_m - sine * self.sin_m
+
+ if self.easy_margin:
+ phi = torch.where(cosine > 0, phi, cosine)
+ else:
+ phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm)
+
+ #one_hot = torch.zeros(cosine.size(), device='cuda' if torch.cuda.is_available() else 'cpu')
+ one_hot = torch.zeros_like(cosine)
+ one_hot.scatter_(1, label.view(-1, 1), 1)
+ output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
+ output = output * self.s
+
+ return output
+
+ def _forward_softmax_sharpened(self, x, e=0.1):
+ # regular softmax
+ output = F.linear(x, self.weight)
+ probas = F.softmax(output / e, dim=1)
+ return probas
+
+ def forward(self, x, x_clean, label=None, epoch=-1):
+ assert x.size()[0] == label.size()[0]
+ assert x.size()[1] == self.in_feats
+
+ output = self._forward(x, label)
+ output_clean = self._forward_softmax_sharpened(x_clean)
+
+ ce = self.ce(output, label)
+
+ # No LGL
+ # prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
+ # return ce, prec1, None
+
+ mask = (torch.log(ce) <= self.lgl_threshold).detach()
+
+ if epoch <= 8:
+ # LGL only
+ nselect = torch.clamp(sum(mask), min=1).item()
+ loss = torch.sum(ce * mask, dim=-1) / nselect
+ prec1 = accuracy(output.detach(), label * mask.detach(), topk=(1,))[0]
+ return loss, prec1, ce
+
+ # LGL + LC
+
+ label_LC = output_clean.argmax(dim=1)
+
+ max_vals = torch.gather(output_clean, 1, label_LC.unsqueeze(1)).squeeze(1)
+ mask_LC = (max_vals > self.lc_threshold).detach()
+
+ ce_LC = self.ce(output, label_LC)
+
+ mask_LGL_LC = ~mask & mask_LC
+ loss = torch.mean(ce * mask + ce_LC * mask_LGL_LC, dim=-1)
+ prec1 = accuracy(output.detach(), label * mask.detach() + label_LC * mask_LGL_LC.detach(), topk=(1,))[0]
+
+ return loss, prec1, ce
+
+ def get_pseudo_labels(self, x, label):
+ output = self._forward_softmax_sharpened(x)
+ return output.argmax(dim=1)
+
+"""
+ def forward(self, x, x_clean, label=None):
+
+ assert x.size()[0] == label.size()[0]
+ assert x.size()[1] == self.in_feats
+
+ P_aam = self._forward(x, label)
+
+ P_softmax = self._forward_softmax_sharpened(x)
+ P_clean_softmax = self._forward_softmax_sharpened(x_clean)
+
+ ce = self.ce(P_aam, label)
+
+ # No LGL
+ # prec1 = accuracy(output.detach(), label.detach(), topk=(1,))[0]
+ # return ce, prec1, None
+
+ mask = (torch.log(ce) <= self.lgl_threshold).detach()
+
+ # LGL only
+ # nselect = torch.clamp(sum(mask), min=1).item()
+ # loss = torch.sum(ce * mask, dim=-1) / nselect
+ # prec1 = accuracy(output.detach(), label * mask.detach(), topk=(1,))[0]
+ # return loss, prec1, ce
+
+ # LGL + LC
+ label_LC = P_clean_softmax.argmax(dim=1)
+ ce_LC = self.ce(P_softmax, label_LC)
+
+ inverted_mask = ~mask
+ loss = torch.mean(ce * mask + ce_LC * inverted_mask, dim=-1)
+ prec1 = accuracy(P_softmax.detach(), label * mask.detach() + label_LC * inverted_mask.detach(), topk=(1,))[0]
+
+ return loss, prec1, ce
+"""
\ No newline at end of file
diff --git a/models/Baseline/Spk_Encoder.py b/models/Baseline/Spk_Encoder.py
new file mode 100644
index 0000000..dc80870
--- /dev/null
+++ b/models/Baseline/Spk_Encoder.py
@@ -0,0 +1,112 @@
+import math
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import LayerNorm
+from .WavLM import *
+
+import torch
+import torch.nn as nn
+
+class MHFA(nn.Module):
+ def __init__(self, head_nb=8, inputs_dim=768, compression_dim=128, outputs_dim=256):
+ super(MHFA, self).__init__()
+
+ # Define learnable weights for key and value computations across layers
+ self.weights_k = nn.Parameter(data=torch.ones(13), requires_grad=True)
+ self.weights_v = nn.Parameter(data=torch.ones(13), requires_grad=True)
+
+ # Initialize given parameters
+ self.head_nb = head_nb
+ self.ins_dim = inputs_dim
+ self.cmp_dim = compression_dim
+ self.ous_dim = outputs_dim
+
+ # Define compression linear layers for keys and values
+ self.cmp_linear_k = nn.Linear(self.ins_dim, self.cmp_dim)
+ self.cmp_linear_v = nn.Linear(self.ins_dim, self.cmp_dim)
+
+ # Define linear layer to compute multi-head attention weights
+ self.att_head = nn.Linear(self.cmp_dim, self.head_nb)
+
+ # Define a fully connected layer for final output
+ self.pooling_fc = nn.Linear(self.head_nb * self.cmp_dim, self.ous_dim)
+
+ def forward(self, x):
+ # Input x has shape: [Batch, Dim, Frame_len, Nb_Layer]
+
+ # Compute the key by taking a weighted sum of input across layers
+ k = torch.sum(x.mul(nn.functional.softmax(self.weights_k, dim=-1)), dim=-1).transpose(1, 2)
+
+ # Compute the value in a similar fashion
+ v = torch.sum(x.mul(nn.functional.softmax(self.weights_v, dim=-1)), dim=-1).transpose(1, 2)
+
+ # Pass the keys and values through compression linear layers
+ k = self.cmp_linear_k(k)
+ v = self.cmp_linear_v(v)
+
+ # Compute attention weights using compressed keys
+ att_k = self.att_head(k)
+
+ # Adjust dimensions for computing attention output
+ v = v.unsqueeze(-2)
+
+ # Compute attention output by taking weighted sum of values using softmaxed attention weights
+ pooling_outs = torch.sum(v.mul(nn.functional.softmax(att_k, dim=1).unsqueeze(-1)), dim=1)
+
+ # Reshape the tensor before passing through the fully connected layer
+ b, h, f = pooling_outs.shape
+ pooling_outs = pooling_outs.reshape(b, -1)
+
+ # Pass through fully connected layer to get the final output
+ outs = self.pooling_fc(pooling_outs)
+
+ return outs
+
+
+class spk_extractor(nn.Module):
+ def __init__(self,**kwargs):
+ super(spk_extractor, self).__init__()
+ # checkpoint = torch.load('/mnt/proj3/open-24-5/pengjy_new/WavLM/Pretrained_model/WavLM-Base+.pt')
+ print("Pre-trained Model: {}".format(kwargs['pretrained_model_path']))
+ checkpoint = torch.load(kwargs['pretrained_model_path'])
+ cfg = WavLMConfig(checkpoint['cfg'])
+ self.model = WavLM(cfg)
+ self.loadParameters(checkpoint['model'])
+ self.backend = MHFA(head_nb=64)
+
+
+ def forward(self,wav_and_flag):
+
+ x = wav_and_flag[0]
+
+ cnn_outs, layer_results = self.model.extract_features(x, output_layer=13)
+ layer_reps = [x.transpose(0, 1) for x, _ in layer_results]
+ x = torch.stack(layer_reps).transpose(0,-1).transpose(0,1)
+
+ out = self.backend(x)
+ return out
+
+ def loadParameters(self, param):
+
+ self_state = self.model.state_dict();
+ loaded_state = param
+
+ for name, param in loaded_state.items():
+ origname = name;
+
+
+ if name not in self_state:
+ # print("%s is not in the model."%origname);
+ continue;
+
+ if self_state[name].size() != loaded_state[origname].size():
+ print("Wrong parameter length: %s, model: %s, loaded: %s"%(origname, self_state[name].size(), loaded_state[origname].size()));
+ continue;
+
+ self_state[name].copy_(param);
+
+
+def MainModel(**kwargs):
+ model = spk_extractor(**kwargs)
+ return model
diff --git a/models/Baseline/WavLM.py b/models/Baseline/WavLM.py
new file mode 100644
index 0000000..dfa2147
--- /dev/null
+++ b/models/Baseline/WavLM.py
@@ -0,0 +1,749 @@
+# --------------------------------------------------------
+# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
+# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Based on fairseq code bases
+# https://github.com/pytorch/fairseq
+# --------------------------------------------------------
+
+import math
+import logging
+from typing import List, Optional, Tuple
+
+import numpy as np
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import LayerNorm
+from .modules import (
+ Fp32GroupNorm,
+ Fp32LayerNorm,
+ GradMultiply,
+ MultiheadAttention,
+ SamePad,
+ init_bert_params,
+ get_activation_fn,
+ TransposeLast,
+ GLU_Linear,
+)
+
+logger = logging.getLogger(__name__)
+
+
+def compute_mask_indices(
+ shape: Tuple[int, int],
+ padding_mask: Optional[torch.Tensor],
+ mask_prob: float,
+ mask_length: int,
+ mask_type: str = "static",
+ mask_other: float = 0.0,
+ min_masks: int = 0,
+ no_overlap: bool = False,
+ min_space: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape
+
+ Args:
+ shape: the the shape for which to compute masks.
+ should be of size 2 where first element is batch size and 2nd is timesteps
+ padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
+ mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
+ number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
+ however due to overlaps, the actual number will be smaller (unless no_overlap is True)
+ mask_type: how to compute mask lengths
+ static = fixed size
+ uniform = sample from uniform distribution [mask_other, mask_length*2]
+ normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
+ poisson = sample from possion distribution with lambda = mask length
+ min_masks: minimum number of masked spans
+ no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
+ min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
+ """
+
+ bsz, all_sz = shape
+ mask = np.full((bsz, all_sz), False)
+
+ all_num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * all_sz / float(mask_length)
+ + np.random.rand()
+ )
+
+ all_num_mask = max(min_masks, all_num_mask)
+
+ mask_idcs = []
+ for i in range(bsz):
+ if padding_mask is not None:
+ sz = all_sz - padding_mask[i].long().sum().item()
+ num_mask = int(
+ # add a random number for probabilistic rounding
+ mask_prob * sz / float(mask_length)
+ + np.random.rand()
+ )
+ num_mask = max(min_masks, num_mask)
+ else:
+ sz = all_sz
+ num_mask = all_num_mask
+
+ if mask_type == "static":
+ lengths = np.full(num_mask, mask_length)
+ elif mask_type == "uniform":
+ lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
+ elif mask_type == "normal":
+ lengths = np.random.normal(mask_length, mask_other, size=num_mask)
+ lengths = [max(1, int(round(x))) for x in lengths]
+ elif mask_type == "poisson":
+ lengths = np.random.poisson(mask_length, size=num_mask)
+ lengths = [int(round(x)) for x in lengths]
+ else:
+ raise Exception("unknown mask selection " + mask_type)
+
+ if sum(lengths) == 0:
+ lengths[0] = min(mask_length, sz - 1)
+
+ if no_overlap:
+ mask_idc = []
+
+ def arrange(s, e, length, keep_length):
+ span_start = np.random.randint(s, e - length)
+ mask_idc.extend(span_start + i for i in range(length))
+
+ new_parts = []
+ if span_start - s - min_space >= keep_length:
+ new_parts.append((s, span_start - min_space + 1))
+ if e - span_start - keep_length - min_space > keep_length:
+ new_parts.append((span_start + length + min_space, e))
+ return new_parts
+
+ parts = [(0, sz)]
+ min_length = min(lengths)
+ for length in sorted(lengths, reverse=True):
+ lens = np.fromiter(
+ (e - s if e - s >= length + min_space else 0 for s, e in parts),
+ np.int,
+ )
+ l_sum = np.sum(lens)
+ if l_sum == 0:
+ break
+ probs = lens / np.sum(lens)
+ c = np.random.choice(len(parts), p=probs)
+ s, e = parts.pop(c)
+ parts.extend(arrange(s, e, length, min_length))
+ mask_idc = np.asarray(mask_idc)
+ else:
+ min_len = min(lengths)
+ if sz - min_len <= num_mask:
+ min_len = sz - num_mask - 1
+
+ mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
+
+ mask_idc = np.asarray(
+ [
+ mask_idc[j] + offset
+ for j in range(len(mask_idc))
+ for offset in range(lengths[j])
+ ]
+ )
+
+ mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
+
+ min_len = min([len(m) for m in mask_idcs])
+ for i, mask_idc in enumerate(mask_idcs):
+ if len(mask_idc) > min_len:
+ mask_idc = np.random.choice(mask_idc, min_len, replace=False)
+ mask[i, mask_idc] = True
+
+ return mask
+
+
+class WavLMConfig:
+ def __init__(self, cfg=None):
+ self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
+ self.encoder_layers: int = 12 # num encoder layers in the transformer
+
+ self.encoder_embed_dim: int = 768 # encoder embedding dimension
+ self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
+ self.encoder_attention_heads: int = 12 # num encoder attention heads
+ self.activation_fn: str = "gelu" # activation function to use
+
+ self.layer_norm_first: bool = False # apply layernorm first in the transformer
+ self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
+ self.conv_bias: bool = False # include bias in conv encoder
+ self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
+
+ self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
+
+ # dropouts
+ self.dropout: float = 0.1 # dropout probability for the transformer
+ self.attention_dropout: float = 0.1 # dropout probability for attention weights
+ self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
+ self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
+ self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
+ self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
+
+ # masking
+ self.mask_length: int = 10 # mask length
+ self.mask_prob: float = 0.65 # probability of replacing a token with mask
+ self.mask_selection: str = "static" # how to choose mask length
+ self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
+ self.no_mask_overlap: bool = False # whether to allow masks to overlap
+ self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
+
+ # channel masking
+ self.mask_channel_length: int = 10 # length of the mask for features (channels)
+ self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
+ self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
+ self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
+ self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
+ self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
+
+ # positional embeddings
+ self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
+ self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
+
+ # relative position embedding
+ self.relative_position_embedding: bool = False # apply relative position embedding
+ self.num_buckets: int = 320 # number of buckets for relative position embedding
+ self.max_distance: int = 1280 # maximum distance for relative position embedding
+ self.gru_rel_pos: bool = False # apply gated relative position embedding
+
+ if cfg is not None:
+ self.update(cfg)
+
+ def update(self, cfg: dict):
+ self.__dict__.update(cfg)
+
+
+class WavLM(nn.Module):
+ def __init__(
+ self,
+ cfg: WavLMConfig,
+ ) -> None:
+ super().__init__()
+ logger.info(f"WavLM Config: {cfg.__dict__}")
+
+ self.cfg = cfg
+ feature_enc_layers = eval(cfg.conv_feature_layers)
+ self.embed = feature_enc_layers[-1][0]
+
+ self.feature_extractor = ConvFeatureExtractionModel(
+ conv_layers=feature_enc_layers,
+ dropout=0.0,
+ mode=cfg.extractor_mode,
+ conv_bias=cfg.conv_bias,
+ )
+
+ self.post_extract_proj = (
+ nn.Linear(self.embed, cfg.encoder_embed_dim)
+ if self.embed != cfg.encoder_embed_dim
+ else None
+ )
+
+ self.mask_prob = cfg.mask_prob
+ self.mask_selection = cfg.mask_selection
+ self.mask_other = cfg.mask_other
+ self.mask_length = cfg.mask_length
+ self.no_mask_overlap = cfg.no_mask_overlap
+ self.mask_min_space = cfg.mask_min_space
+
+ self.mask_channel_prob = cfg.mask_channel_prob
+ self.mask_channel_selection = cfg.mask_channel_selection
+ self.mask_channel_other = cfg.mask_channel_other
+ self.mask_channel_length = cfg.mask_channel_length
+ self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
+ self.mask_channel_min_space = cfg.mask_channel_min_space
+
+ self.dropout_input = nn.Dropout(cfg.dropout_input)
+ self.dropout_features = nn.Dropout(cfg.dropout_features)
+
+ self.feature_grad_mult = cfg.feature_grad_mult
+
+ self.mask_emb = nn.Parameter(
+ torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
+ )
+
+ self.encoder = TransformerEncoder(cfg)
+ self.layer_norm = LayerNorm(self.embed)
+
+ def apply_mask(self, x, padding_mask):
+ B, T, C = x.shape
+ if self.mask_prob > 0:
+ mask_indices = compute_mask_indices(
+ (B, T),
+ padding_mask,
+ self.mask_prob,
+ self.mask_length,
+ self.mask_selection,
+ self.mask_other,
+ min_masks=2,
+ no_overlap=self.no_mask_overlap,
+ min_space=self.mask_min_space,
+ )
+ mask_indices = torch.from_numpy(mask_indices).to(x.device)
+ x[mask_indices] = self.mask_emb
+ else:
+ mask_indices = None
+
+ if self.mask_channel_prob > 0:
+ mask_channel_indices = compute_mask_indices(
+ (B, C),
+ None,
+ self.mask_channel_prob,
+ self.mask_channel_length,
+ self.mask_channel_selection,
+ self.mask_channel_other,
+ no_overlap=self.no_mask_channel_overlap,
+ min_space=self.mask_channel_min_space,
+ )
+ mask_channel_indices = (
+ torch.from_numpy(mask_channel_indices)
+ .to(x.device)
+ .unsqueeze(1)
+ .expand(-1, T, -1)
+ )
+ x[mask_channel_indices] = 0
+
+ return x, mask_indices
+
+ def forward_padding_mask(
+ self, features: torch.Tensor, padding_mask: torch.Tensor,
+ ) -> torch.Tensor:
+ extra = padding_mask.size(1) % features.size(1)
+ if extra > 0:
+ padding_mask = padding_mask[:, :-extra]
+ padding_mask = padding_mask.view(
+ padding_mask.size(0), features.size(1), -1
+ )
+ padding_mask = padding_mask.all(-1)
+ return padding_mask
+
+ def extract_features(
+ self,
+ source: torch.Tensor,
+ padding_mask: Optional[torch.Tensor] = None,
+ mask: bool = False,
+ ret_conv: bool = False,
+ output_layer: Optional[int] = None,
+ ret_layer_results: bool = False,
+ ):
+
+
+ with torch.no_grad():
+ features = self.feature_extractor(source)
+
+ cnn_outs = features
+ features = features[-1].transpose(1, 2)
+ features = self.layer_norm(features)
+
+ if padding_mask is not None:
+ padding_mask = self.forward_padding_mask(features, padding_mask)
+
+ if self.post_extract_proj is not None:
+ features = self.post_extract_proj(features)
+
+ features = self.dropout_input(features)
+
+ if mask:
+ x, mask_indices = self.apply_mask(
+ features, padding_mask
+ )
+ else:
+ x = features
+
+ # feature: (B, T, D), float
+ # target: (B, T), long
+ # x: (B, T, D), float
+ # padding_mask: (B, T), bool
+ # mask_indices: (B, T), bool
+ x, layer_results = self.encoder(
+ x,
+ padding_mask=padding_mask,
+ layer=None if output_layer is None else output_layer - 1
+ )
+ return cnn_outs, layer_results
+ # res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
+
+ # feature = res["features"] if ret_conv else res["x"]
+ # if ret_layer_results:
+ # feature = (feature, res["layer_results"])
+ # return feature, res["padding_mask"]
+
+
+class ConvFeatureExtractionModel(nn.Module):
+ def __init__(
+ self,
+ conv_layers: List[Tuple[int, int, int]],
+ dropout: float = 0.0,
+ mode: str = "default",
+ conv_bias: bool = False,
+ conv_type: str = "default"
+ ):
+ super().__init__()
+
+ assert mode in {"default", "layer_norm"}
+
+ def block(
+ n_in,
+ n_out,
+ k,
+ stride,
+ is_layer_norm=False,
+ is_group_norm=False,
+ conv_bias=False,
+ ):
+ def make_conv():
+ conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
+ nn.init.kaiming_normal_(conv.weight)
+ return conv
+
+ assert (
+ is_layer_norm and is_group_norm
+ ) == False, "layer norm and group norm are exclusive"
+
+ if is_layer_norm:
+ return nn.Sequential(
+ make_conv(),
+ nn.Dropout(p=dropout),
+ nn.Sequential(
+ TransposeLast(),
+ Fp32LayerNorm(dim, elementwise_affine=True),
+ TransposeLast(),
+ ),
+ nn.GELU(),
+ )
+ elif is_group_norm:
+ return nn.Sequential(
+ make_conv(),
+ nn.Dropout(p=dropout),
+ Fp32GroupNorm(dim, dim, affine=True),
+ nn.GELU(),
+ )
+ else:
+ return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
+
+ self.conv_type = conv_type
+ if self.conv_type == "default":
+ in_d = 1
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3, "invalid conv definition: " + str(cl)
+ (dim, k, stride) = cl
+
+ self.conv_layers.append(
+ block(
+ in_d,
+ dim,
+ k,
+ stride,
+ is_layer_norm=mode == "layer_norm",
+ is_group_norm=mode == "default" and i == 0,
+ conv_bias=conv_bias,
+ )
+ )
+ in_d = dim
+ elif self.conv_type == "conv2d":
+ in_d = 1
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3
+ (dim, k, stride) = cl
+
+ self.conv_layers.append(
+ torch.nn.Conv2d(in_d, dim, k, stride)
+ )
+ self.conv_layers.append(torch.nn.ReLU())
+ in_d = dim
+ elif self.conv_type == "custom":
+ in_d = 1
+ idim = 80
+ self.conv_layers = nn.ModuleList()
+ for i, cl in enumerate(conv_layers):
+ assert len(cl) == 3
+ (dim, k, stride) = cl
+ self.conv_layers.append(
+ torch.nn.Conv2d(in_d, dim, k, stride, padding=1)
+ )
+ self.conv_layers.append(
+ torch.nn.LayerNorm([dim, idim])
+ )
+ self.conv_layers.append(torch.nn.ReLU())
+ in_d = dim
+ if (i + 1) % 2 == 0:
+ self.conv_layers.append(
+ torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)
+ )
+ idim = int(math.ceil(idim / 2))
+ else:
+ pass
+
+ def forward(self, x, mask=None):
+
+ # BxT -> BxCxT
+ x_lst = []
+ x = x.unsqueeze(1)
+ if self.conv_type == "custom":
+ for conv in self.conv_layers:
+ if isinstance(conv, nn.LayerNorm):
+ x = x.transpose(1, 2)
+ x = conv(x).transpose(1, 2)
+ else:
+ x = conv(x)
+ x = x.transpose(2, 3).contiguous()
+ x = x.view(x.size(0), -1, x.size(-1))
+ else:
+ for conv in self.conv_layers:
+ x = conv(x)
+ x_lst.append(x)
+ if self.conv_type == "conv2d":
+ b, c, t, f = x.size()
+ x = x.transpose(2, 3).contiguous().view(b, c * f, t)
+ return x_lst
+
+
+class TransformerEncoder(nn.Module):
+ def __init__(self, args):
+ super().__init__()
+
+ self.dropout = args.dropout
+ self.embedding_dim = args.encoder_embed_dim
+
+ self.pos_conv = nn.Conv1d(
+ self.embedding_dim,
+ self.embedding_dim,
+ kernel_size=args.conv_pos,
+ padding=args.conv_pos // 2,
+ groups=args.conv_pos_groups,
+ )
+ dropout = 0
+ std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
+ nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
+ nn.init.constant_(self.pos_conv.bias, 0)
+
+ self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
+ self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
+
+ if hasattr(args, "relative_position_embedding"):
+ self.relative_position_embedding = args.relative_position_embedding
+ self.num_buckets = args.num_buckets
+ self.max_distance = args.max_distance
+ else:
+ self.relative_position_embedding = False
+ self.num_buckets = 0
+ self.max_distance = 0
+
+ self.layers = nn.ModuleList(
+ [
+ TransformerSentenceEncoderLayer(
+ embedding_dim=self.embedding_dim,
+ ffn_embedding_dim=args.encoder_ffn_embed_dim,
+ num_attention_heads=args.encoder_attention_heads,
+ dropout=self.dropout,
+ attention_dropout=args.attention_dropout,
+ activation_dropout=args.activation_dropout,
+ activation_fn=args.activation_fn,
+ layer_norm_first=args.layer_norm_first,
+ has_relative_attention_bias=(self.relative_position_embedding and i == 0),
+ num_buckets=self.num_buckets,
+ max_distance=self.max_distance,
+ gru_rel_pos=args.gru_rel_pos,
+ )
+ for i in range(args.encoder_layers)
+ ]
+ )
+
+ self.layer_norm_first = args.layer_norm_first
+ self.layer_norm = LayerNorm(self.embedding_dim)
+ self.layerdrop = args.encoder_layerdrop
+
+ self.apply(init_bert_params)
+
+ def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
+ x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
+
+ if self.layer_norm_first and layer is None:
+ x = self.layer_norm(x)
+
+ return x, layer_results
+
+ def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
+
+ if padding_mask is not None:
+ x[padding_mask] = 0
+
+ x_conv = self.pos_conv(x.transpose(1, 2))
+ x_conv = x_conv.transpose(1, 2)
+ x = x + x_conv
+
+ if not self.layer_norm_first:
+ x = self.layer_norm(x)
+
+ x = F.dropout(x, p=self.dropout, training=self.training)
+
+ # B x T x C -> T x B x C
+ x = x.transpose(0, 1)
+
+ layer_results = []
+ z = None
+ if tgt_layer is not None:
+ layer_results.append((x, z))
+ r = None
+ pos_bias = None
+ for i, layer in enumerate(self.layers):
+ dropout_probability = np.random.random()
+ if not self.training or (dropout_probability > self.layerdrop):
+ x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,
+ self_attn_mask=streaming_mask, pos_bias=pos_bias)
+ if tgt_layer is not None:
+ layer_results.append((x, z))
+ if i == tgt_layer:
+ r = x
+ break
+
+ if r is not None:
+ x = r
+
+ # T x B x C -> B x T x C
+ x = x.transpose(0, 1)
+
+ return x, layer_results
+
+
+class TransformerSentenceEncoderLayer(nn.Module):
+ """
+ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
+ models.
+ """
+
+ def __init__(
+ self,
+ embedding_dim: float = 768,
+ ffn_embedding_dim: float = 3072,
+ num_attention_heads: float = 8,
+ dropout: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ activation_fn: str = "relu",
+ layer_norm_first: bool = False,
+ has_relative_attention_bias: bool = False,
+ num_buckets: int = 0,
+ max_distance: int = 0,
+ rescale_init: bool = False,
+ gru_rel_pos: bool = False,
+ ) -> None:
+
+ super().__init__()
+ # Initialize parameters
+ self.embedding_dim = embedding_dim
+ self.dropout = dropout
+ self.activation_dropout = activation_dropout
+
+ # Initialize blocks
+ self.activation_name = activation_fn
+ self.activation_fn = get_activation_fn(activation_fn)
+ self.self_attn = MultiheadAttention(
+ self.embedding_dim,
+ num_attention_heads,
+ dropout=attention_dropout,
+ self_attention=True,
+ has_relative_attention_bias=has_relative_attention_bias,
+ num_buckets=num_buckets,
+ max_distance=max_distance,
+ rescale_init=rescale_init,
+ gru_rel_pos=gru_rel_pos,
+ )
+
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(self.activation_dropout)
+ self.dropout3 = nn.Dropout(dropout)
+
+ self.layer_norm_first = layer_norm_first
+
+ # layer norm associated with the self attention layer
+ self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
+
+ if self.activation_name == "glu":
+ self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
+ else:
+ self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
+ self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
+
+ import torchaudio.functional as AudioF
+
+
+ # layer norm associated with the position wise feed-forward NN
+ self.final_layer_norm = LayerNorm(self.embedding_dim)
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ self_attn_mask: torch.Tensor = None,
+ self_attn_padding_mask: torch.Tensor = None,
+ need_weights: bool = False,
+ pos_bias=None
+ ):
+ """
+ LayerNorm is applied either before or after the self-attention/ffn
+ modules similar to the original Transformer imlementation.
+ """
+ residual = x
+
+ if self.layer_norm_first:
+ x = self.self_attn_layer_norm(x)
+ x, attn, pos_bias = self.self_attn(
+ query=x,
+ key=x,
+ value=x,
+ key_padding_mask=self_attn_padding_mask,
+ need_weights=False,
+ attn_mask=self_attn_mask,
+ position_bias=pos_bias
+ )
+ x = self.dropout1(x)
+ x = residual + x
+
+ residual = x
+
+ x = self.final_layer_norm(x)
+ if self.activation_name == "glu":
+ x = self.fc1(x)
+ else:
+ x = self.activation_fn(self.fc1(x))
+ x = self.dropout2(x)
+ x = self.fc2(x)
+ x = self.dropout3(x)
+ x = residual + x
+ else:
+
+
+ x, attn, pos_bias = self.self_attn(
+ query=x,
+ key=x,
+ value=x,
+ key_padding_mask=self_attn_padding_mask,
+ need_weights=need_weights,
+ attn_mask=self_attn_mask,
+ position_bias=pos_bias
+ )
+
+ x = self.dropout1(x)
+ x = residual + x
+
+ x = self.self_attn_layer_norm(x)
+
+ residual = x
+ if self.activation_name == "glu":
+ x = self.fc1(x)
+ else:
+ x = self.activation_fn(self.fc1(x))
+ x = self.dropout2(x)
+ x = self.fc2(x)
+ x = self.dropout3(x)
+ x = residual + x
+
+
+ x = self.final_layer_norm(x)
+
+ return x, attn, pos_bias
diff --git a/models/Baseline/modules.py b/models/Baseline/modules.py
new file mode 100644
index 0000000..1dcfc6f
--- /dev/null
+++ b/models/Baseline/modules.py
@@ -0,0 +1,827 @@
+# --------------------------------------------------------
+# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
+# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
+# Copyright (c) 2021 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Based on fairseq code bases
+# https://github.com/pytorch/fairseq
+# --------------------------------------------------------
+
+import math
+import warnings
+from typing import Dict, Optional, Tuple
+import torch
+from torch import Tensor, nn
+from torch.nn import Parameter
+import torch.nn.functional as F
+
+
+class TransposeLast(nn.Module):
+ def __init__(self, deconstruct_idx=None):
+ super().__init__()
+ self.deconstruct_idx = deconstruct_idx
+
+ def forward(self, x):
+ if self.deconstruct_idx is not None:
+ x = x[self.deconstruct_idx]
+ return x.transpose(-2, -1)
+
+
+class Fp32LayerNorm(nn.LayerNorm):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def forward(self, input):
+ output = F.layer_norm(
+ input.float(),
+ self.normalized_shape,
+ self.weight.float() if self.weight is not None else None,
+ self.bias.float() if self.bias is not None else None,
+ self.eps,
+ )
+ return output.type_as(input)
+
+
+class Fp32GroupNorm(nn.GroupNorm):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ def forward(self, input):
+ output = F.group_norm(
+ input.float(),
+ self.num_groups,
+ self.weight.float() if self.weight is not None else None,
+ self.bias.float() if self.bias is not None else None,
+ self.eps,
+ )
+ return output.type_as(input)
+
+
+class GradMultiply(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, x, scale):
+ ctx.scale = scale
+ res = x.new(x)
+ return res
+
+ @staticmethod
+ def backward(ctx, grad):
+ return grad * ctx.scale, None
+
+
+class SamePad(nn.Module):
+ def __init__(self, kernel_size, causal=False):
+ super().__init__()
+ if causal:
+ self.remove = kernel_size - 1
+ else:
+ self.remove = 1 if kernel_size % 2 == 0 else 0
+
+ def forward(self, x):
+ if self.remove > 0:
+ x = x[:, :, : -self.remove]
+ return x
+
+
+class Swish(nn.Module):
+ """Swish function
+ """
+
+ def __init__(self):
+ """Construct an MultiHeadedAttention object."""
+ super(Swish, self).__init__()
+ self.act = torch.nn.Sigmoid()
+
+ def forward(self, x):
+ return x * self.act(x)
+
+
+class GLU_Linear(nn.Module):
+ def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
+ super(GLU_Linear, self).__init__()
+
+ self.glu_type = glu_type
+ self.output_dim = output_dim
+
+ if glu_type == "sigmoid":
+ self.glu_act = torch.nn.Sigmoid()
+ elif glu_type == "swish":
+ self.glu_act = Swish()
+ elif glu_type == "relu":
+ self.glu_act = torch.nn.ReLU()
+ elif glu_type == "gelu":
+ self.glu_act = torch.nn.GELU()
+
+ if bias_in_glu:
+ self.linear = nn.Linear(input_dim, output_dim * 2, True)
+ else:
+ self.linear = nn.Linear(input_dim, output_dim * 2, False)
+
+ def forward(self, x):
+ # to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
+ x = self.linear(x)
+
+ if self.glu_type == "bilinear":
+ x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
+ else:
+ x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
+
+ return x
+
+
+def gelu_accurate(x):
+ if not hasattr(gelu_accurate, "_a"):
+ gelu_accurate._a = math.sqrt(2 / math.pi)
+ return (
+ 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3))))
+ )
+
+
+def gelu(x: torch.Tensor) -> torch.Tensor:
+ return torch.nn.functional.gelu(x.float()).type_as(x)
+
+
+def get_activation_fn(activation: str):
+ """Returns the activation function corresponding to `activation`"""
+
+ if activation == "relu":
+ return F.relu
+ elif activation == "gelu":
+ return gelu
+ elif activation == "gelu_fast":
+ warnings.warn(
+ "--activation-fn=gelu_fast has been renamed to gelu_accurate"
+ )
+ return gelu_accurate
+ elif activation == "gelu_accurate":
+ return gelu_accurate
+ elif activation == "tanh":
+ return torch.tanh
+ elif activation == "linear":
+ return lambda x: x
+ elif activation == "glu":
+ return lambda x: x
+ else:
+ raise RuntimeError("--activation-fn {} not supported".format(activation))
+
+
+def init_bert_params(module):
+ """
+ Initialize the weights specific to the BERT Model.
+ This overrides the default initializations depending on the specified arguments.
+ 1. If normal_init_linear_weights is set then weights of linear
+ layer will be initialized using the normal distribution and
+ bais will be set to the specified value.
+ 2. If normal_init_embed_weights is set then weights of embedding
+ layer will be initialized using the normal distribution.
+ 3. If normal_init_proj_weights is set then weights of
+ in_project_weight for MultiHeadAttention initialized using
+ the normal distribution (to be validated).
+ """
+
+ def normal_(data):
+ # with FSDP, module params will be on CUDA, so we cast them back to CPU
+ # so that the RNG is consistent with and without FSDP
+ data.copy_(
+ data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
+ )
+
+ if isinstance(module, nn.Linear):
+ normal_(module.weight.data)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ if isinstance(module, nn.Embedding):
+ normal_(module.weight.data)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ if isinstance(module, MultiheadAttention):
+ normal_(module.q_proj.weight.data)
+ normal_(module.k_proj.weight.data)
+ normal_(module.v_proj.weight.data)
+
+
+def quant_noise(module, p, block_size):
+ """
+ Wraps modules and applies quantization noise to the weights for
+ subsequent quantization with Iterative Product Quantization as
+ described in "Training with Quantization Noise for Extreme Model Compression"
+
+ Args:
+ - module: nn.Module
+ - p: amount of Quantization Noise
+ - block_size: size of the blocks for subsequent quantization with iPQ
+
+ Remarks:
+ - Module weights must have the right sizes wrt the block size
+ - Only Linear, Embedding and Conv2d modules are supported for the moment
+ - For more detail on how to quantize by blocks with convolutional weights,
+ see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
+ - We implement the simplest form of noise here as stated in the paper
+ which consists in randomly dropping blocks
+ """
+
+ # if no quantization noise, don't register hook
+ if p <= 0:
+ return module
+
+ # supported modules
+ assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
+
+ # test whether module.weight has the right sizes wrt block_size
+ is_conv = module.weight.ndim == 4
+
+ # 2D matrix
+ if not is_conv:
+ assert (
+ module.weight.size(1) % block_size == 0
+ ), "Input features must be a multiple of block sizes"
+
+ # 4D matrix
+ else:
+ # 1x1 convolutions
+ if module.kernel_size == (1, 1):
+ assert (
+ module.in_channels % block_size == 0
+ ), "Input channels must be a multiple of block sizes"
+ # regular convolutions
+ else:
+ k = module.kernel_size[0] * module.kernel_size[1]
+ assert k % block_size == 0, "Kernel size must be a multiple of block size"
+
+ def _forward_pre_hook(mod, input):
+ # no noise for evaluation
+ if mod.training:
+ if not is_conv:
+ # gather weight and sizes
+ weight = mod.weight
+ in_features = weight.size(1)
+ out_features = weight.size(0)
+
+ # split weight matrix into blocks and randomly drop selected blocks
+ mask = torch.zeros(
+ in_features // block_size * out_features, device=weight.device
+ )
+ mask.bernoulli_(p)
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
+
+ else:
+ # gather weight and sizes
+ weight = mod.weight
+ in_channels = mod.in_channels
+ out_channels = mod.out_channels
+
+ # split weight matrix into blocks and randomly drop selected blocks
+ if mod.kernel_size == (1, 1):
+ mask = torch.zeros(
+ int(in_channels // block_size * out_channels),
+ device=weight.device,
+ )
+ mask.bernoulli_(p)
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
+ else:
+ mask = torch.zeros(
+ weight.size(0), weight.size(1), device=weight.device
+ )
+ mask.bernoulli_(p)
+ mask = (
+ mask.unsqueeze(2)
+ .unsqueeze(3)
+ .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
+ )
+
+ # scale weights and apply mask
+ mask = mask.to(
+ torch.bool
+ ) # x.bool() is not currently supported in TorchScript
+ s = 1 / (1 - p)
+ mod.weight.data = s * weight.masked_fill(mask, 0)
+
+ module.register_forward_pre_hook(_forward_pre_hook)
+ return module
+
+
+class MultiheadAttention(nn.Module):
+ """Multi-headed attention.
+
+ See "Attention Is All You Need" for more details.
+ """
+
+ def __init__(
+ self,
+ embed_dim,
+ num_heads,
+ kdim=None,
+ vdim=None,
+ dropout=0.0,
+ bias=True,
+ add_bias_kv=False,
+ add_zero_attn=False,
+ self_attention=False,
+ encoder_decoder_attention=False,
+ q_noise=0.0,
+ qn_block_size=8,
+ has_relative_attention_bias=False,
+ num_buckets=32,
+ max_distance=128,
+ gru_rel_pos=False,
+ rescale_init=False,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+ self.num_heads = num_heads
+ self.dropout_module = nn.Dropout(dropout)
+
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.num_buckets = num_buckets
+ self.max_distance = max_distance
+ if self.has_relative_attention_bias:
+ self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
+
+ self.head_dim = embed_dim // num_heads
+ self.q_head_dim = self.head_dim
+ self.k_head_dim = self.head_dim
+ assert (
+ self.head_dim * num_heads == self.embed_dim
+ ), "embed_dim must be divisible by num_heads"
+ self.scaling = self.head_dim ** -0.5
+
+ self.self_attention = self_attention
+ self.encoder_decoder_attention = encoder_decoder_attention
+
+ assert not self.self_attention or self.qkv_same_dim, (
+ "Self-attention requires query, key and " "value to be of the same size"
+ )
+
+ k_bias = True
+ if rescale_init:
+ k_bias = False
+
+ k_embed_dim = embed_dim
+ q_embed_dim = embed_dim
+
+ self.k_proj = quant_noise(
+ nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
+ )
+ self.v_proj = quant_noise(
+ nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+ self.q_proj = quant_noise(
+ nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ self.out_proj = quant_noise(
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
+ )
+
+ if add_bias_kv:
+ self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
+ self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
+ else:
+ self.bias_k = self.bias_v = None
+
+ self.add_zero_attn = add_zero_attn
+
+ self.gru_rel_pos = gru_rel_pos
+ if self.gru_rel_pos:
+ self.grep_linear = nn.Linear(self.q_head_dim, 8)
+ self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
+
+ self.reset_parameters()
+
+ def reset_parameters(self):
+ if self.qkv_same_dim:
+ # Empirically observed the convergence to be much better with
+ # the scaled initialization
+ nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
+ nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
+ else:
+ nn.init.xavier_uniform_(self.k_proj.weight)
+ nn.init.xavier_uniform_(self.v_proj.weight)
+ nn.init.xavier_uniform_(self.q_proj.weight)
+
+ nn.init.xavier_uniform_(self.out_proj.weight)
+ if self.out_proj.bias is not None:
+ nn.init.constant_(self.out_proj.bias, 0.0)
+ if self.bias_k is not None:
+ nn.init.xavier_normal_(self.bias_k)
+ if self.bias_v is not None:
+ nn.init.xavier_normal_(self.bias_v)
+ if self.has_relative_attention_bias:
+ nn.init.xavier_normal_(self.relative_attention_bias.weight)
+
+ def _relative_positions_bucket(self, relative_positions, bidirectional=True):
+ num_buckets = self.num_buckets
+ max_distance = self.max_distance
+ relative_buckets = 0
+
+ if bidirectional:
+ num_buckets = num_buckets // 2
+ relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
+ relative_positions = torch.abs(relative_positions)
+ else:
+ relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
+
+ max_exact = num_buckets // 2
+ is_small = relative_positions < max_exact
+
+ relative_postion_if_large = max_exact + (
+ torch.log(relative_positions.float() / max_exact)
+ / math.log(max_distance / max_exact)
+ * (num_buckets - max_exact)
+ ).to(torch.long)
+ relative_postion_if_large = torch.min(
+ relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
+ )
+
+ relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
+ return relative_buckets
+
+ def compute_bias(self, query_length, key_length):
+ context_position = torch.arange(query_length, dtype=torch.long)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
+ relative_position = memory_position - context_position
+ relative_position_bucket = self._relative_positions_bucket(
+ relative_position,
+ bidirectional=True
+ )
+ relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
+ values = self.relative_attention_bias(relative_position_bucket)
+ values = values.permute([2, 0, 1])
+ return values
+
+ def forward(
+ self,
+ query,
+ key: Optional[Tensor],
+ value: Optional[Tensor],
+ key_padding_mask: Optional[Tensor] = None,
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
+ need_weights: bool = True,
+ static_kv: bool = False,
+ attn_mask: Optional[Tensor] = None,
+ before_softmax: bool = False,
+ need_head_weights: bool = False,
+ position_bias: Optional[Tensor] = None
+ ) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
+ """Input shape: Time x Batch x Channel
+
+ Args:
+ key_padding_mask (ByteTensor, optional): mask to exclude
+ keys that are pads, of shape `(batch, src_len)`, where
+ padding elements are indicated by 1s.
+ need_weights (bool, optional): return the attention weights,
+ averaged over heads (default: False).
+ attn_mask (ByteTensor, optional): typically used to
+ implement causal attention, where the mask prevents the
+ attention from looking forward in time (default: None).
+ before_softmax (bool, optional): return the raw attention
+ weights and values before the attention softmax.
+ need_head_weights (bool, optional): return the attention
+ weights for each head. Implies *need_weights*. Default:
+ return the average attention weights over all heads.
+ """
+ if need_head_weights:
+ need_weights = True
+
+ is_tpu = query.device.type == "xla"
+
+ tgt_len, bsz, embed_dim = query.size()
+ src_len = tgt_len
+ assert embed_dim == self.embed_dim
+ assert list(query.size()) == [tgt_len, bsz, embed_dim]
+ if key is not None:
+ src_len, key_bsz, _ = key.size()
+ if not torch.jit.is_scripting():
+ assert key_bsz == bsz
+ assert value is not None
+ assert src_len, bsz == value.shape[:2]
+
+ if self.has_relative_attention_bias and position_bias is None:
+ position_bias = self.compute_bias(tgt_len, src_len)
+ position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
+
+ if (
+ not is_tpu # don't use PyTorch version on TPUs
+ and incremental_state is None
+ and not static_kv
+ # A workaround for quantization to work. Otherwise JIT compilation
+ # treats bias in linear module as method.
+ and not torch.jit.is_scripting()
+ and self.q_head_dim == self.head_dim
+ ):
+ assert key is not None and value is not None
+ assert attn_mask is None
+
+ attn_mask_rel_pos = None
+ if position_bias is not None:
+ attn_mask_rel_pos = position_bias
+ if self.gru_rel_pos:
+ query_layer = query.transpose(0, 1)
+ new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1)
+ query_layer = query_layer.view(*new_x_shape)
+ query_layer = query_layer.permute(0, 2, 1, 3)
+ _B, _H, _L, __ = query_layer.size()
+
+ gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
+ _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
+ gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
+ attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
+
+ attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len))
+ k_proj_bias = self.k_proj.bias
+ if k_proj_bias is None:
+ k_proj_bias = torch.zeros_like(self.q_proj.bias)
+
+ x, attn = F.multi_head_attention_forward(
+ query,
+ key,
+ value,
+ self.embed_dim,
+ self.num_heads,
+ torch.empty([0]),
+ torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
+ self.bias_k,
+ self.bias_v,
+ self.add_zero_attn,
+ self.dropout_module.p,
+ self.out_proj.weight,
+ self.out_proj.bias,
+ self.training,
+ # self.training or self.dropout_module.apply_during_inference,
+ key_padding_mask,
+ need_weights,
+ attn_mask_rel_pos,
+ use_separate_proj_weight=True,
+ q_proj_weight=self.q_proj.weight,
+ k_proj_weight=self.k_proj.weight,
+ v_proj_weight=self.v_proj.weight,
+ )
+ return x, attn, position_bias
+
+ if incremental_state is not None:
+ saved_state = self._get_input_buffer(incremental_state)
+ if saved_state is not None and "prev_key" in saved_state:
+ # previous time steps are cached - no need to recompute
+ # key and value if they are static
+ if static_kv:
+ assert self.encoder_decoder_attention and not self.self_attention
+ key = value = None
+ else:
+ saved_state = None
+
+ if self.self_attention:
+ q = self.q_proj(query)
+ k = self.k_proj(query)
+ v = self.v_proj(query)
+ elif self.encoder_decoder_attention:
+ # encoder-decoder attention
+ q = self.q_proj(query)
+ if key is None:
+ assert value is None
+ k = v = None
+ else:
+ k = self.k_proj(key)
+ v = self.v_proj(key)
+
+ else:
+ assert key is not None and value is not None
+ q = self.q_proj(query)
+ k = self.k_proj(key)
+ v = self.v_proj(value)
+ q *= self.scaling
+
+ if self.bias_k is not None:
+ assert self.bias_v is not None
+ k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
+ v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+ if key_padding_mask is not None:
+ key_padding_mask = torch.cat(
+ [
+ key_padding_mask,
+ key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
+ ],
+ dim=1,
+ )
+
+ q = (
+ q.contiguous()
+ .view(tgt_len, bsz * self.num_heads, self.q_head_dim)
+ .transpose(0, 1)
+ )
+ if k is not None:
+ k = (
+ k.contiguous()
+ .view(-1, bsz * self.num_heads, self.k_head_dim)
+ .transpose(0, 1)
+ )
+ if v is not None:
+ v = (
+ v.contiguous()
+ .view(-1, bsz * self.num_heads, self.head_dim)
+ .transpose(0, 1)
+ )
+
+ if saved_state is not None:
+ # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
+ if "prev_key" in saved_state:
+ _prev_key = saved_state["prev_key"]
+ assert _prev_key is not None
+ prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ k = prev_key
+ else:
+ assert k is not None
+ k = torch.cat([prev_key, k], dim=1)
+ src_len = k.size(1)
+ if "prev_value" in saved_state:
+ _prev_value = saved_state["prev_value"]
+ assert _prev_value is not None
+ prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
+ if static_kv:
+ v = prev_value
+ else:
+ assert v is not None
+ v = torch.cat([prev_value, v], dim=1)
+ prev_key_padding_mask: Optional[Tensor] = None
+ if "prev_key_padding_mask" in saved_state:
+ prev_key_padding_mask = saved_state["prev_key_padding_mask"]
+ assert k is not None and v is not None
+ key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
+ key_padding_mask=key_padding_mask,
+ prev_key_padding_mask=prev_key_padding_mask,
+ batch_size=bsz,
+ src_len=k.size(1),
+ static_kv=static_kv,
+ )
+
+ saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
+ saved_state["prev_key_padding_mask"] = key_padding_mask
+ # In this branch incremental_state is never None
+ assert incremental_state is not None
+ incremental_state = self._set_input_buffer(incremental_state, saved_state)
+ assert k is not None
+ assert k.size(1) == src_len
+
+ # This is part of a workaround to get around fork/join parallelism
+ # not supporting Optional types.
+ if key_padding_mask is not None and key_padding_mask.dim() == 0:
+ key_padding_mask = None
+
+ if key_padding_mask is not None:
+ assert key_padding_mask.size(0) == bsz
+ assert key_padding_mask.size(1) == src_len
+
+ if self.add_zero_attn:
+ assert v is not None
+ src_len += 1
+ k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
+ v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
+ if attn_mask is not None:
+ attn_mask = torch.cat(
+ [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
+ )
+ if key_padding_mask is not None:
+ key_padding_mask = torch.cat(
+ [
+ key_padding_mask,
+ torch.zeros(key_padding_mask.size(0), 1).type_as(
+ key_padding_mask
+ ),
+ ],
+ dim=1,
+ )
+
+ attn_weights = torch.bmm(q, k.transpose(1, 2))
+ attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
+
+ assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
+
+ if attn_mask is not None:
+ attn_mask = attn_mask.unsqueeze(0)
+ attn_weights += attn_mask
+
+ if key_padding_mask is not None:
+ # don't attend to padding symbols
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ if not is_tpu:
+ attn_weights = attn_weights.masked_fill(
+ key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
+ float("-inf"),
+ )
+ else:
+ attn_weights = attn_weights.transpose(0, 2)
+ attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
+ attn_weights = attn_weights.transpose(0, 2)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if before_softmax:
+ return attn_weights, v, position_bias
+
+ if position_bias is not None:
+ if self.gru_rel_pos == 1:
+ query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim)
+ _B, _H, _L, __ = query_layer.size()
+ gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
+ _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
+ gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
+ position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
+
+ position_bias = position_bias.view(attn_weights.size())
+
+ attn_weights = attn_weights + position_bias
+
+ attn_weights_float = F.softmax(
+ attn_weights, dim=-1
+ )
+ attn_weights = attn_weights_float.type_as(attn_weights)
+ attn_probs = self.dropout_module(attn_weights)
+
+ assert v is not None
+ attn = torch.bmm(attn_probs, v)
+ assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
+ attn = self.out_proj(attn)
+ attn_weights: Optional[Tensor] = None
+ if need_weights:
+ attn_weights = attn_weights_float.view(
+ bsz, self.num_heads, tgt_len, src_len
+ ).transpose(1, 0)
+ if not need_head_weights:
+ # average attention weights over heads
+ attn_weights = attn_weights.mean(dim=0)
+
+ return attn, attn_weights, position_bias
+
+ @staticmethod
+ def _append_prev_key_padding_mask(
+ key_padding_mask: Optional[Tensor],
+ prev_key_padding_mask: Optional[Tensor],
+ batch_size: int,
+ src_len: int,
+ static_kv: bool,
+ ) -> Optional[Tensor]:
+ # saved key padding masks have shape (bsz, seq_len)
+ if prev_key_padding_mask is not None and static_kv:
+ new_key_padding_mask = prev_key_padding_mask
+ elif prev_key_padding_mask is not None and key_padding_mask is not None:
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
+ )
+ # During incremental decoding, as the padding token enters and
+ # leaves the frame, there will be a time when prev or current
+ # is None
+ elif prev_key_padding_mask is not None:
+ if src_len > prev_key_padding_mask.size(1):
+ filler = torch.zeros(
+ (batch_size, src_len - prev_key_padding_mask.size(1)),
+ device=prev_key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [prev_key_padding_mask.float(), filler.float()], dim=1
+ )
+ else:
+ new_key_padding_mask = prev_key_padding_mask.float()
+ elif key_padding_mask is not None:
+ if src_len > key_padding_mask.size(1):
+ filler = torch.zeros(
+ (batch_size, src_len - key_padding_mask.size(1)),
+ device=key_padding_mask.device,
+ )
+ new_key_padding_mask = torch.cat(
+ [filler.float(), key_padding_mask.float()], dim=1
+ )
+ else:
+ new_key_padding_mask = key_padding_mask.float()
+ else:
+ new_key_padding_mask = prev_key_padding_mask
+ return new_key_padding_mask
+
+ def _get_input_buffer(
+ self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
+ ) -> Dict[str, Optional[Tensor]]:
+ result = self.get_incremental_state(incremental_state, "attn_state")
+ if result is not None:
+ return result
+ else:
+ empty_result: Dict[str, Optional[Tensor]] = {}
+ return empty_result
+
+ def _set_input_buffer(
+ self,
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
+ buffer: Dict[str, Optional[Tensor]],
+ ):
+ return self.set_incremental_state(incremental_state, "attn_state", buffer)
+
+ def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
+ return attn_weights
diff --git a/optimizer/adamw.py b/optimizer/adamw.py
new file mode 100644
index 0000000..1218cf4
--- /dev/null
+++ b/optimizer/adamw.py
@@ -0,0 +1,10 @@
+#! /usr/bin/python
+# -*- encoding: utf-8 -*-
+
+import torch
+
+def Optimizer(parameters, lr, **kwargs):
+
+ print('Initialised Adam optimizer')
+
+ return torch.optim.AdamW(parameters, lr = lr);
diff --git a/pseudo_labeling.py b/pseudo_labeling.py
new file mode 100644
index 0000000..6f96c97
--- /dev/null
+++ b/pseudo_labeling.py
@@ -0,0 +1,79 @@
+import time
+import argparse
+
+import torch
+
+from cuml.cluster import KMeans
+
+# from sklearn.cluster import KMeans
+from sklearn.cluster import AgglomerativeClustering
+
+from sklearn.metrics import normalized_mutual_info_score
+
+
+def main(args):
+ # Load embeddings
+ embeddings_file = torch.load(args.embeddings_file)
+ files = list(embeddings_file.keys())
+ labels = [file.split('/')[-3] for file in files]
+ embeddings = torch.cat(list(embeddings_file.values())).numpy()
+ print(f"Embedding shape: {embeddings.shape}")
+
+ # K-Means
+ print("KMeans...")
+ kmeans_start_time = time.time()
+ kmeans = KMeans(
+ n_clusters=args.n_clusters,
+ random_state=0,
+ max_samples_per_batch=1000000,
+ verbose=True
+ ).fit(embeddings)
+ pseudo_labels = kmeans.labels_
+ centroids = kmeans.cluster_centers_
+ print(f"K-Means duration: {(time.time() - kmeans_start_time)/60:.2f} min")
+
+ # AHC
+ if args.n_clusters_ahc > 0:
+ print("AHC...")
+ ahc_start_time = time.time()
+ ahc_labels = AgglomerativeClustering(
+ n_clusters=args.n_clusters_ahc
+ ).fit_predict(centroids)
+ pseudo_labels = [ahc_labels[pl] for pl in pseudo_labels]
+ print(f"AHC duration: {(time.time() - ahc_start_time)/60:.2f} min")
+
+ # Print NMI
+ nmi_score = normalized_mutual_info_score(labels, pseudo_labels)
+ print(f"NMI: {nmi_score}")
+
+ # Export pseudo labels
+ with open(args.output_file, 'w') as f:
+ for file, pseudo_label in zip(files, pseudo_labels):
+ f.write(f"{pseudo_label} {file}\n")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ 'embeddings_file',
+ help='Path to embeddings file (.pt).'
+ )
+ parser.add_argument(
+ 'output_file',
+ help='Path to output file (.txt).'
+ )
+ parser.add_argument(
+ '--n_clusters',
+ help='Number of clusters for KMeans.',
+ type=int,
+ default=50000
+ )
+ parser.add_argument(
+ '--n_clusters_ahc',
+ help='Number of clusters for Agglomerative Clustering.',
+ type=int,
+ default=7500
+ )
+ args = parser.parse_args()
+
+ main(args)
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..2d1a60c
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,10 @@
+torch>=1.7.0
+torchaudio>=0.7.0
+numpy
+scipy
+scikit-learn
+pyyaml
+soundfile
+
+--extra-index-url https://pypi.nvidia.com
+cuml-cu12==24.8.*
\ No newline at end of file
diff --git a/scheduler/steplr.py b/scheduler/steplr.py
new file mode 100644
index 0000000..12364bc
--- /dev/null
+++ b/scheduler/steplr.py
@@ -0,0 +1,16 @@
+#! /usr/bin/python
+# -*- encoding: utf-8 -*-
+
+import torch
+
+def Scheduler(optimizer, test_interval, max_epoch, lr_decay, **kwargs):
+
+ sche_fn = torch.optim.lr_scheduler.StepLR(optimizer, step_size=test_interval, gamma=lr_decay)
+
+ lr_step = 'epoch'
+
+ print('Initialised step LR scheduler')
+
+ return sche_fn, lr_step
+
+
diff --git a/tools/rsync_jz.sh b/tools/rsync_jz.sh
new file mode 100755
index 0000000..7d1d665
--- /dev/null
+++ b/tools/rsync_jz.sh
@@ -0,0 +1,23 @@
+source_path="."
+target_path="jeanzay:~/wavlm_ssl_sv"
+
+rsync -azh $source_path $target_path \
+ --progress \
+ --force \
+ --delete \
+ --exclude="slurm_*" \
+ --exclude="data" \
+ --exclude="exp" \
+ --keep-dirlinks
+
+while inotifywait -r -e modify,create,delete $source_path
+do
+ rsync -azh $source_path $target_path \
+ --progress \
+ --force \
+ --delete \
+ --exclude="slurm_*" \
+ --exclude="data" \
+ --exclude="exp" \
+ --keep-dirlinks
+done
diff --git a/trainSpeakerNet.py b/trainSpeakerNet.py
new file mode 100644
index 0000000..85dec23
--- /dev/null
+++ b/trainSpeakerNet.py
@@ -0,0 +1,395 @@
+#!/usr/bin/python
+#-*- coding: utf-8 -*-
+
+import sys, time, os, argparse, socket
+import yaml
+import numpy
+import pdb
+import torch
+import glob
+import zipfile
+import warnings
+import datetime
+from tuneThreshold import *
+from SpeakerNet import *
+from DatasetLoader import *
+import torch.distributed as dist
+import torch.multiprocessing as mp
+from scipy.stats import norm
+from sklearn.mixture import GaussianMixture
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Parse arguments
+## ===== ===== ===== ===== ===== ===== ===== =====
+# os.environ['CUDA_VISIBLE_DEVICES']='0,1,2,3'
+
+parser = argparse.ArgumentParser(description = "SpeakerNet");
+
+parser.add_argument('--config', type=str, default=None, help='Config YAML file');
+
+## Data loader
+parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
+parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
+parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
+parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
+parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
+parser.add_argument('--augment', type=bool, default=True, help='Augment input')
+parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
+
+
+
+## Training details
+parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
+parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
+parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
+
+## Optimizer
+parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
+parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
+parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
+parser.add_argument("--lr_decay", type=float, default=0.9, help='Learning rate decay every [test_interval] epochs');
+
+
+## Pre-trained Transformer Model
+parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
+parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
+parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
+parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
+parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
+
+## Loss functions
+parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
+parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
+parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
+parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
+parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
+parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
+
+## Evaluation parameters
+parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
+parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
+parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
+
+## Load and save
+parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
+parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
+
+## Training and test data
+parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
+parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
+parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
+parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
+parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
+parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
+
+## Model definition
+parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
+parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
+parser.add_argument('--model', type=str, default="", help='Name of model definition');
+parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
+parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
+
+## For test only
+parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
+
+## Distributed and mixed precision training
+parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
+parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
+parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
+
+args = parser.parse_args();
+
+## Parse YAML
+def find_option_type(key, parser):
+ for opt in parser._get_optional_actions():
+ if ('--' + key) in opt.option_strings:
+ return opt.type
+ raise ValueError
+
+if args.config is not None:
+ with open(args.config, "r") as f:
+ yml_config = yaml.load(f, Loader=yaml.FullLoader)
+ for k, v in yml_config.items():
+ if k in args.__dict__:
+ typ = find_option_type(k, parser)
+ args.__dict__[k] = typ(v)
+ else:
+ sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
+
+
+## Try to import NSML
+try:
+ import nsml
+ from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
+ from nsml import NSML_NFS_OUTPUT, SESSION_NAME
+except:
+ pass;
+
+warnings.simplefilter("ignore")
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Trainer script
+## ===== ===== ===== ===== ===== ===== ===== =====
+
+def LGL_threshold_update_gmm(loss_vals_path):
+ with open(loss_vals_path, 'r') as f:
+ lines = [line.strip().split() for line in f.readlines()]
+
+ # losses = [float(line[0]) for line in lines]
+ losses = []
+ errs = 0
+ for line in lines:
+ try:
+ losses.append(float(line[0]))
+ except ValueError:
+ errs += 1
+ pass
+ if errs > 0:
+ print('Could not read %d lines' % errs)
+
+ log_losses = np.log(losses)
+
+ gmm = GaussianMixture(n_components=2, random_state=0, covariance_type='full', tol=0.00001, max_iter=1000)
+ gmm.fit(log_losses.reshape(-1, 1))
+
+ mean1 = gmm.means_[0, 0]
+ covar1 = gmm.covariances_[0, 0]
+ weight1 = gmm.weights_[0]
+ x = np.linspace(min(log_losses), max(log_losses), 1000)
+ g1 = weight1 * norm.pdf(x, mean1, np.sqrt(covar1))
+
+ mean2 = gmm.means_[1, 0]
+ covar2 = gmm.covariances_[1, 0]
+ weight2 = gmm.weights_[1]
+ g2 = weight2 * norm.pdf(x, mean2, np.sqrt(covar2))
+
+ intersection = np.argwhere(np.diff(np.sign(g1 - g2))).flatten()
+
+ max1 = x[np.argmax(g1)]
+ max2 = x[np.argmax(g2)]
+ good_intersection = x[intersection][(x[intersection] > min(max1, max2)) & (x[intersection] < max(max1, max2))]
+ assert len(good_intersection) == 1, 'Wrong number of intersections'
+ good_intersection = good_intersection[0]
+
+ return good_intersection
+
+import idr_torch
+
+def main_worker(gpu, ngpus_per_node, args):
+
+ args.gpu = gpu
+
+ args.gpu = idr_torch.rank
+ ngpus_per_node = idr_torch.size
+
+ ## Load models
+ s = SpeakerNet(**vars(args));
+
+ if args.distributed:
+ # os.environ['MASTER_ADDR']='localhost'
+ # os.environ['MASTER_PORT']=args.port
+
+ # dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu, init_method='tcp://localhost:12345')
+ dist.init_process_group(backend='nccl', world_size=ngpus_per_node, rank=args.gpu)
+
+ torch.cuda.set_device(args.gpu)
+ s.cuda(args.gpu)
+
+ s = torch.nn.parallel.DistributedDataParallel(s, device_ids=[args.gpu])#, find_unused_parameters=True)
+
+ print('Loaded the model on GPU {:d}'.format(args.gpu))
+
+ else:
+ s = WrappedModel(s).cuda(args.gpu)
+
+ it = 1
+ eers = [100];
+
+ if args.gpu == 0:
+ ## Write args to scorefile
+ scorefile = open(args.result_save_path+"/scores.txt", "a+");
+
+ ## Initialise trainer and data loader
+ train_dataset = train_dataset_loader(**vars(args))
+
+ train_sampler = train_dataset_sampler(train_dataset, **vars(args))
+
+ train_loader = torch.utils.data.DataLoader(
+ train_dataset,
+ batch_size=args.batch_size,
+ num_workers=args.nDataLoaderThread,
+ sampler=train_sampler,
+ pin_memory=True,
+ worker_init_fn=worker_init_fn,
+ drop_last=True,
+ )
+
+ # trainLoader = get_data_loader(args.train_list, **vars(args));
+ trainer = ModelTrainer(s, **vars(args))
+
+ ## Load model weights
+ modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
+ modelfiles.sort()
+
+ if(args.initial_model != ""):
+ trainer.loadParameters(args.initial_model);
+ print("Model {} loaded!".format(args.initial_model));
+ elif len(modelfiles) >= 1:
+ print("Model {} loaded from previous state!".format(modelfiles[-1]));
+ trainer.loadParameters(modelfiles[-1]);
+ it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
+
+ for ii in range(1,it):
+ trainer.__scheduler__.step()
+
+
+ pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
+
+ print('Total parameters: ',pytorch_total_params)
+ ## Evaluation code - must run on single GPU
+ if args.eval == True:
+
+
+ print('Test list',args.test_list)
+
+ sc, lab, _, sc1,sc2 = trainer.evaluateFromList(**vars(args))
+
+ if args.gpu == 0:
+
+ result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
+ result_s1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
+ result_s2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
+
+
+
+ fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
+ mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
+
+ print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]), "VEER_s1 {:2.4f}".format(result_s1[1]),"VEER_s2 {:2.4f}".format(result_s2[1]),"MinDCF {:2.5f}".format(mindcf));
+
+ if ("nsml" in sys.modules) and args.gpu == 0:
+ training_report = {};
+ training_report["summary"] = True;
+ training_report["epoch"] = it;
+ training_report["step"] = it;
+ training_report["val_eer"] = result[1];
+ training_report["val_dcf"] = mindcf;
+
+ nsml.report(**training_report);
+
+ return
+
+ ## Save training code and params
+ if args.gpu == 0:
+ pyfiles = glob.glob('./*.py')
+ strtime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
+
+ zipf = zipfile.ZipFile(args.result_save_path+ '/run%s.zip'%strtime, 'w', zipfile.ZIP_DEFLATED)
+ for file in pyfiles:
+ zipf.write(file)
+ zipf.close()
+
+ with open(args.result_save_path + '/run%s.cmd'%strtime, 'w') as f:
+ f.write('%s'%args)
+
+
+ ## Core training script
+ for it in range(it,args.max_epoch+1):
+
+ train_sampler.set_epoch(it)
+
+ clr = [x['lr'] for x in trainer.__optimizer__.param_groups]
+
+ loss_vals_dir = 'exp/' + args.save_path.split('/')[-1] + '/loss_vals'
+ os.makedirs(loss_vals_dir, exist_ok=True)
+ loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % it)
+
+ if it >= 5:
+ prev_loss_vals_path = os.path.join(loss_vals_dir, 'epoch_%d.txt' % (it - 1))
+ LGL_threshold = LGL_threshold_update_gmm(prev_loss_vals_path)
+ # LGL_threshold = 1
+
+ if args.gpu == 0:
+ if LGL_threshold is not None:
+ print('Updated LGL threshold to %f' % LGL_threshold)
+ else:
+ print('Wrong number of intersections, keeping LGL threshold at %f' % LGL_threshold)
+
+ trainer.update_lgl_threshold(LGL_threshold)
+
+
+ loss, traineer = trainer.train_network(train_loader, loss_vals_path, it, verbose=(args.gpu == 0))
+
+ if args.distributed:
+ dist.barrier()
+ with open(loss_vals_path, 'w') as final_file:
+ for r in range(dist.get_world_size()):
+ part_file_path = f"{loss_vals_path.split('.')[0]}_rank{r}.txt"
+ with open(part_file_path, 'r') as part_file:
+ final_file.write(part_file.read())
+
+ if args.gpu == 0:
+ print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f}".format(it, traineer.item(), loss.item(), max(clr)));
+ scorefile.write("Epoch {:d}, TEER/TAcc {:2.2f}, TLOSS {:f}, LR {:f} \n".format(it, traineer.item(), loss.item(), max(clr)));
+
+ if it % args.test_interval == 0:
+
+ # sc, lab, _, as1, as2 = trainer.evaluateFromList(**vars(args))
+
+ if args.gpu == 0:
+ trainer.saveParameters(args.model_save_path+"/model%09d.model"%it);
+
+ scorefile.flush()
+
+ if ("nsml" in sys.modules) and args.gpu == 0:
+ training_report = {};
+ training_report["summary"] = True;
+ training_report["epoch"] = it;
+ training_report["step"] = it;
+ training_report["train_loss"] = loss;
+ training_report["min_eer"] = min(eers);
+
+ nsml.report(**training_report);
+
+ if args.gpu == 0:
+ scorefile.close();
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Main function
+## ===== ===== ===== ===== ===== ===== ===== =====
+
+
+def main():
+
+ # print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
+ # os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'
+ # print(os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set'))
+
+
+ if ("nsml" in sys.modules) and not args.eval:
+ args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
+
+ args.model_save_path = args.save_path+"/model"
+ args.result_save_path = args.save_path+"/result"
+ args.feat_save_path = ""
+
+ os.makedirs(args.model_save_path, exist_ok=True)
+ os.makedirs(args.result_save_path, exist_ok=True)
+
+ n_gpus = torch.cuda.device_count()
+ print(n_gpus)
+
+ print('Python Version:', sys.version)
+ print('PyTorch Version:', torch.__version__)
+ print('Number of GPUs:', torch.cuda.device_count())
+ print('Save path:',args.save_path)
+
+ if args.distributed:
+ # mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
+ main_worker(None, None, args)
+ else:
+ main_worker(0, None, args)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/trainSpeakerNet_Eval.py b/trainSpeakerNet_Eval.py
new file mode 100644
index 0000000..fb5d196
--- /dev/null
+++ b/trainSpeakerNet_Eval.py
@@ -0,0 +1,250 @@
+#!/usr/bin/python
+#-*- coding: utf-8 -*-
+
+import sys, time, os, argparse, socket
+import yaml
+import numpy
+import pdb
+import torch
+import glob
+import zipfile
+import csv
+import warnings
+import datetime
+from tuneThreshold import *
+from SpeakerNet import *
+from DatasetLoader import *
+import torch.distributed as dist
+import torch.multiprocessing as mp
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Parse arguments
+## ===== ===== ===== ===== ===== ===== ===== =====
+# os.environ['CUDA_VISIBLE_DEVICES']='0'
+parser = argparse.ArgumentParser(description = "SpeakerNet");
+
+parser.add_argument('--config', type=str, default=None, help='Config YAML file');
+
+## Data loader
+parser.add_argument('--max_frames', type=int, default=200, help='Input length to the network for training');
+parser.add_argument('--eval_frames', type=int, default=300, help='Input length to the network for testing; 0 uses the whole files');
+parser.add_argument('--batch_size', type=int, default=400, help='Batch size, number of speakers per batch');
+parser.add_argument('--max_seg_per_spk', type=int, default=500, help='Maximum number of utterances per speaker per epoch');
+parser.add_argument('--nDataLoaderThread', type=int, default=10, help='Number of loader threads');
+parser.add_argument('--augment', type=bool, default=True, help='Augment input')
+parser.add_argument('--seed', type=int, default=20211202, help='Seed for the random number generator');
+
+
+
+## Training details
+parser.add_argument('--test_interval', type=int, default=1, help='Test and save every [test_interval] epochs');
+parser.add_argument('--max_epoch', type=int, default=50, help='Maximum number of epochs');
+parser.add_argument('--trainfunc', type=str, default="aamsoftmax", help='Loss function');
+
+## Optimizer
+parser.add_argument('--optimizer', type=str, default="adamw", help='sgd or adam');
+parser.add_argument('--scheduler', type=str, default="steplr", help='Learning rate scheduler');
+parser.add_argument('--lr', type=float, default=0.001, help='Learning rate');
+
+
+## Pre-trained Transformer Model
+parser.add_argument('--pretrained_model_path', type=str, default="None", help='Absolute path to the pre-trained model');
+parser.add_argument('--weight_finetuning_reg', type=float, default=0.001, help='L2 regularization towards the initial pre-trained model');
+parser.add_argument('--LLRD_factor', type=float, default=1.0, help='Layer-wise Learning Rate Decay (LLRD) factor');
+parser.add_argument('--LR_Transformer', type=float, default=2e-5, help='Learning rate of pre-trained model');
+parser.add_argument('--LR_MHFA', type=float, default=5e-3, help='Learning rate of back-end attentive pooling model');
+
+## Loss functions
+parser.add_argument("--hard_prob", type=float, default=0.5, help='Hard negative mining probability, otherwise random, only for some loss functions');
+parser.add_argument("--hard_rank", type=int, default=10, help='Hard negative mining rank in the batch, only for some loss functions');
+parser.add_argument('--margin', type=float, default=0.2, help='Loss margin, only for some loss functions');
+parser.add_argument('--scale', type=float, default=30, help='Loss scale, only for some loss functions');
+parser.add_argument('--nPerSpeaker', type=int, default=1, help='Number of utterances per speaker per batch, only for metric learning based losses');
+parser.add_argument('--nClasses', type=int, default=5994, help='Number of speakers in the softmax layer, only for softmax-based losses');
+
+## Evaluation parameters
+parser.add_argument('--dcf_p_target', type=float, default=0.05, help='A priori probability of the specified target speaker');
+parser.add_argument('--dcf_c_miss', type=float, default=1, help='Cost of a missed detection');
+parser.add_argument('--dcf_c_fa', type=float, default=1, help='Cost of a spurious detection');
+
+## Load and save
+parser.add_argument('--initial_model', type=str, default="", help='Initial model weights');
+parser.add_argument('--save_path', type=str, default="exps/exp1", help='Path for model and logs');
+
+## Training and test data
+parser.add_argument('--train_list', type=str, default="data/train_list.txt", help='Train list');
+parser.add_argument('--test_list', type=str, default="data/test_list.txt", help='Evaluation list');
+parser.add_argument('--train_path', type=str, default="data/voxceleb2", help='Absolute path to the train set');
+parser.add_argument('--test_path', type=str, default="data/voxceleb1", help='Absolute path to the test set');
+parser.add_argument('--musan_path', type=str, default="data/musan_split", help='Absolute path to the test set');
+parser.add_argument('--rir_path', type=str, default="data/simulated_rirs", help='Absolute path to the test set');
+
+## Model definition
+parser.add_argument('--n_mels', type=int, default=80, help='Number of mel filterbanks');
+parser.add_argument('--log_input', type=bool, default=False, help='Log input features')
+parser.add_argument('--model', type=str, default="", help='Name of model definition');
+parser.add_argument('--encoder_type', type=str, default="SAP", help='Type of encoder');
+parser.add_argument('--nOut', type=int, default=192, help='Embedding size in the last FC layer');
+
+## For test only
+parser.add_argument('--eval', dest='eval', action='store_true', help='Eval only')
+
+parser.add_argument('--generate_embeddings', dest='generate_embeddings', action='store_true', help='Generate embeddings for the train set')
+parser.add_argument('--embeddings_path', type=str, default="")
+parser.add_argument('--generate_pseudo_labels', dest='generate_pseudo_labels', action='store_true', help='Generate pseudo labels for the train set')
+
+## Distributed and mixed precision training
+parser.add_argument('--port', type=str, default="7888", help='Port for distributed training, input as text');
+parser.add_argument('--distributed', dest='distributed', action='store_true', help='Enable distributed training')
+parser.add_argument('--mixedprec', dest='mixedprec', action='store_true', help='Enable mixed precision training')
+
+args = parser.parse_args();
+
+## Parse YAML
+def find_option_type(key, parser):
+ for opt in parser._get_optional_actions():
+ if ('--' + key) in opt.option_strings:
+ return opt.type
+ raise ValueError
+
+if args.config is not None:
+ with open(args.config, "r") as f:
+ yml_config = yaml.load(f, Loader=yaml.FullLoader)
+ for k, v in yml_config.items():
+ if k in args.__dict__:
+ typ = find_option_type(k, parser)
+ args.__dict__[k] = typ(v)
+ else:
+ sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
+
+
+## Try to import NSML
+try:
+ import nsml
+ from nsml import HAS_DATASET, DATASET_PATH, PARALLEL_WORLD, PARALLEL_PORTS, MY_RANK
+ from nsml import NSML_NFS_OUTPUT, SESSION_NAME
+except:
+ pass;
+
+warnings.simplefilter("ignore")
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Trainer script
+## ===== ===== ===== ===== ===== ===== ===== =====
+
+def main_worker(gpu, ngpus_per_node, args):
+
+ args.gpu = gpu
+
+ ## Load models
+ s = SpeakerNet(**vars(args));
+
+
+ s = WrappedModel(s).cuda(args.gpu)
+
+ it = 1
+ eers = [100];
+
+ # trainLoader = get_data_loader(args.train_list, **vars(args));
+ trainer = ModelTrainer(s, **vars(args))
+
+ ## Load model weights
+ modelfiles = glob.glob('%s/model0*.model'%args.model_save_path)
+ modelfiles.sort()
+
+ if(args.initial_model != ""):
+ trainer.loadParameters(args.initial_model);
+ print("Model {} loaded!".format(args.initial_model));
+ elif len(modelfiles) >= 1:
+ # print("Model {} loaded from previous state!".format(modelfiles[-2]));
+ # trainer.loadParameters(modelfiles[-2]);
+ it = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][5:]) + 1
+
+ for ii in range(1,it):
+ trainer.__scheduler__.step()
+
+
+ # pytorch_total_params = sum(p.numel() for p in s.module.__S__.model.feature_extractor.parameters())
+ pytorch_total_params = sum(p.numel() for p in s.module.__S__.parameters())
+
+
+ print('Total parameters: ',pytorch_total_params)
+ # quit();
+ ## Evaluation code - must run on single GPU
+ if args.eval == True:
+ scorefile_score = open(args.result_save_path+"/Eval_scores_mean_O_All.txt", "w");
+ print('Test list',args.test_list)
+
+ for i in range(1,15):
+ print("Model {} loaded from previous state!".format(modelfiles[-i]));
+ trainer.loadParameters(modelfiles[-i]);
+ # trainer.loadParameters(modelfiles[0]);
+
+ # sc, lab, _,sc1,sc2 = trainer.evaluateFromList_1utterance(**vars(args))
+ sc, lab, _,sc1,sc2 = trainer.evaluateFromList(**vars(args))
+
+ if args.gpu == 0:
+
+ result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
+ result1 = tuneThresholdfromScore(sc1, lab, [1, 0.1]);
+ result2 = tuneThresholdfromScore(sc2, lab, [1, 0.1]);
+
+ fnrs, fprs, thresholds = ComputeErrorRates(sc, lab)
+
+ mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, args.dcf_p_target, args.dcf_c_miss, args.dcf_c_fa)
+ mindcf_1, threshold_1 = ComputeMinDcf(fnrs, fprs, thresholds, 0.01, args.dcf_c_miss, args.dcf_c_fa)
+
+ print('\n',time.strftime("%Y-%m-%d %H:%M:%S"), "VEER {:2.4f}".format(result[1]),"MinDCF05 {:2.5f}".format(mindcf), "MinDCF01 {:2.5f}".format(mindcf_1));
+
+ scorefile_score.write("Epoch {}, VEER {:2.4f}, VEER_S1 {:2.4f}, VEER_S2 {:2.4f}, MinDCF05 {:2.5f}, MinDCF01 {:2.5f}\n".format(modelfiles[-i], result[1], result1[1], result2[1], mindcf,mindcf_1));
+ scorefile_score.flush()
+
+ scorefile_score.close()
+ return
+
+ if args.generate_embeddings == True:
+ print('Generate embeddings for the train set')
+ wav_list_file = args.train_list
+ with open(wav_list_file,'r') as f:
+ wav_files = [args.train_path + '/' + line.strip().split()[1] for line in f.readlines()]
+
+ print("Model {} loaded from previous state!".format(modelfiles[-1]));
+ trainer.loadParameters(modelfiles[-1]);
+
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+ trainer.generate_embeddings(wav_files, args.embeddings_path, device)
+
+
+## ===== ===== ===== ===== ===== ===== ===== =====
+## Main function
+## ===== ===== ===== ===== ===== ===== ===== =====
+
+
+def main():
+
+ if ("nsml" in sys.modules) and not args.eval:
+ args.save_path = os.path.join(args.save_path,SESSION_NAME.replace('/','_'))
+
+ args.model_save_path = args.save_path+"/model"
+ args.result_save_path = args.save_path+"/result"
+ args.feat_save_path = ""
+
+ os.makedirs(args.model_save_path, exist_ok=True)
+ os.makedirs(args.result_save_path, exist_ok=True)
+
+ n_gpus = torch.cuda.device_count()
+
+ print('Python Version:', sys.version)
+ print('PyTorch Version:', torch.__version__)
+ print('Number of GPUs:', torch.cuda.device_count())
+ print('Save path:',args.save_path)
+
+ if args.distributed:
+ mp.spawn(main_worker, nprocs=n_gpus, args=(n_gpus, args))
+ else:
+ main_worker(0, None, args)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/train_ddp_jz.sh b/train_ddp_jz.sh
new file mode 100644
index 0000000..79213a9
--- /dev/null
+++ b/train_ddp_jz.sh
@@ -0,0 +1,19 @@
+#!/bin/bash
+
+#SBATCH --job-name=wavlm_ssl_sv
+#SBATCH --output=slurm_%j
+#SBATCH --nodes=1
+#SBATCH --ntasks=2
+#SBATCH --gres=gpu:2
+#SBATCH --cpus-per-task=10
+#SBATCH --constraint=a100
+#SBATCH --time=20:00:00
+#SBATCH --hint=nomultithread
+#SBATCH --account=kdp@a100
+
+module purge
+
+module load cpuarch/amd
+module load pytorch-gpu/py3/1.12.1
+
+srun python -u trainSpeakerNet.py --config configs/wavlm_mhfa_dlg_lc.yaml --train_list exp/train_list_dino.txt --distributed
\ No newline at end of file
diff --git a/training_framework.svg b/training_framework.svg
new file mode 100755
index 0000000..6eae1f7
--- /dev/null
+++ b/training_framework.svg
@@ -0,0 +1,3 @@
+
+
+
\ No newline at end of file
diff --git a/tuneThreshold.py b/tuneThreshold.py
new file mode 100644
index 0000000..aee3cdc
--- /dev/null
+++ b/tuneThreshold.py
@@ -0,0 +1,87 @@
+#!/usr/bin/python
+#-*- coding: utf-8 -*-
+
+import os
+import glob
+import sys
+import time
+from sklearn import metrics
+import numpy
+import pdb
+from operator import itemgetter
+
+def tuneThresholdfromScore(scores, labels, target_fa, target_fr = None):
+
+ fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)
+ fnr = 1 - tpr
+
+ tunedThreshold = [];
+ if target_fr:
+ for tfr in target_fr:
+ idx = numpy.nanargmin(numpy.absolute((tfr - fnr)))
+ tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
+
+ for tfa in target_fa:
+ idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1]
+ tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
+
+ idxE = numpy.nanargmin(numpy.absolute((fnr - fpr)))
+ eer = max(fpr[idxE],fnr[idxE])*100
+
+ return (tunedThreshold, eer, fpr, fnr);
+
+# Creates a list of false-negative rates, a list of false-positive rates
+# and a list of decision thresholds that give those error-rates.
+def ComputeErrorRates(scores, labels):
+
+ # Sort the scores from smallest to largest, and also get the corresponding
+ # indexes of the sorted scores. We will treat the sorted scores as the
+ # thresholds at which the the error-rates are evaluated.
+ sorted_indexes, thresholds = zip(*sorted(
+ [(index, threshold) for index, threshold in enumerate(scores)],
+ key=itemgetter(1)))
+ sorted_labels = []
+ labels = [labels[i] for i in sorted_indexes]
+ fnrs = []
+ fprs = []
+
+ # At the end of this loop, fnrs[i] is the number of errors made by
+ # incorrectly rejecting scores less than thresholds[i]. And, fprs[i]
+ # is the total number of times that we have correctly accepted scores
+ # greater than thresholds[i].
+ for i in range(0, len(labels)):
+ if i == 0:
+ fnrs.append(labels[i])
+ fprs.append(1 - labels[i])
+ else:
+ fnrs.append(fnrs[i-1] + labels[i])
+ fprs.append(fprs[i-1] + 1 - labels[i])
+ fnrs_norm = sum(labels)
+ fprs_norm = len(labels) - fnrs_norm
+
+ # Now divide by the total number of false negative errors to
+ # obtain the false positive rates across all thresholds
+ fnrs = [x / float(fnrs_norm) for x in fnrs]
+
+ # Divide by the total number of corret positives to get the
+ # true positive rate. Subtract these quantities from 1 to
+ # get the false positive rates.
+ fprs = [1 - x / float(fprs_norm) for x in fprs]
+ return fnrs, fprs, thresholds
+
+# Computes the minimum of the detection cost function. The comments refer to
+# equations in Section 3 of the NIST 2016 Speaker Recognition Evaluation Plan.
+def ComputeMinDcf(fnrs, fprs, thresholds, p_target, c_miss, c_fa):
+ min_c_det = float("inf")
+ min_c_det_threshold = thresholds[0]
+ for i in range(0, len(fnrs)):
+ # See Equation (2). it is a weighted sum of false negative
+ # and false positive errors.
+ c_det = c_miss * fnrs[i] * p_target + c_fa * fprs[i] * (1 - p_target)
+ if c_det < min_c_det:
+ min_c_det = c_det
+ min_c_det_threshold = thresholds[i]
+ # See Equations (3) and (4). Now we normalize the cost.
+ c_def = min(c_miss * p_target, c_fa * (1 - p_target))
+ min_dcf = min_c_det / c_def
+ return min_dcf, min_c_det_threshold
\ No newline at end of file
diff --git a/utils.py b/utils.py
new file mode 100644
index 0000000..3d236fa
--- /dev/null
+++ b/utils.py
@@ -0,0 +1,38 @@
+#! /usr/bin/python
+# -*- encoding: utf-8 -*-
+
+import torch
+import torch.nn.functional as F
+
+def accuracy(output, target, topk=(1,)):
+ """Computes the precision@k for the specified values of k"""
+ maxk = max(topk)
+ batch_size = target.size(0)
+
+ _, pred = output.topk(maxk, 1, True, True)
+ pred = pred.t()
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
+
+ res = []
+ for k in topk:
+ correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
+ res.append(correct_k.mul_(100.0 / batch_size))
+ return res
+
+class PreEmphasis(torch.nn.Module):
+
+ def __init__(self, coef: float = 0.97):
+ super().__init__()
+ self.coef = coef
+ # make kernel
+ # In pytorch, the convolution operation uses cross-correlation. So, filter is flipped.
+ self.register_buffer(
+ 'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
+ )
+
+ def forward(self, input: torch.tensor) -> torch.tensor:
+ assert len(input.size()) == 2, 'The number of dimensions of input tensor must be 2!'
+ # reflect padding to match lengths of in/out
+ input = input.unsqueeze(1)
+ input = F.pad(input, (1, 0), 'reflect')
+ return F.conv1d(input, self.flipped_filter).squeeze(1)
\ No newline at end of file