-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoconet_train.py
395 lines (340 loc) · 15.8 KB
/
coconet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# Copyright 2020 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train the model."""
from __future__ import absolute_import, division, print_function
import os
import time
import lib_data
import lib_graph
import lib_hparams
import numpy as np
import six
import tensorflow.compat.v1 as tf
from magenta.models.coconet import lib_util
from six.moves import range, zip
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
FLAGS = tf.app.flags.FLAGS
flags = tf.app.flags
flags.DEFINE_string('data_dir', None,
'Path to the base directory for different datasets.')
flags.DEFINE_string('logdir', None,
'Path to the directory where checkpoints and '
'summary events will be saved during training and '
'evaluation. Multiple runs can be stored within the '
'parent directory of `logdir`. Point TensorBoard '
'to the parent directory of `logdir` to see all '
'your runs.')
flags.DEFINE_bool('log_progress', True,
'If False, do not log any checkpoints and summary'
'statistics.')
# Dataset.
flags.DEFINE_string('dataset', None,
'Choices: Jsb16thSeparated, MuseData, Nottingham, '
'PianoMidiDe')
flags.DEFINE_float('quantization_level', 0.125, 'Quantization duration.'
'For qpm=120, notated quarter note equals 0.5.')
flags.DEFINE_integer('num_instruments', 4,
'Maximum number of instruments that appear in this '
'dataset. Use 0 if not separating instruments and '
'hence does not matter how many there are.')
flags.DEFINE_bool('separate_instruments', True,
'Separate instruments into different input feature'
'maps or not.')
flags.DEFINE_integer('crop_piece_len', 64, 'The number of time steps '
'included in a crop')
# Model architecture.
flags.DEFINE_string('architecture', 'straight',
'Convnet style. Choices: straight')
# Hparams for depthwise separable conv.
flags.DEFINE_bool('use_sep_conv', False, 'Use depthwise separable '
'convolutions.')
flags.DEFINE_integer('sep_conv_depth_multiplier', 1, 'Depth multiplier for'
'depthwise separable convs.')
flags.DEFINE_integer('num_initial_regular_conv_layers', 2, 'The number of'
'regular convolutional layers to start with when using'
'depthwise separable convolutional layers.')
# Hparams for reducing pointwise in separable convs.
flags.DEFINE_integer('num_pointwise_splits', 1, 'Num of splits on the'
'pointwise convolution stage in depthwise separable'
'convolutions.')
flags.DEFINE_integer('interleave_split_every_n_layers', 1, 'Num of split'
'pointwise layers to interleave between full pointwise'
'layers.')
# Hparams for dilated conv.
flags.DEFINE_integer('num_dilation_blocks', 3, 'The number dilation blocks'
'that starts from dilation rate=1.')
flags.DEFINE_bool('dilate_time_only', False, 'If set, only dilates the time'
'dimension and not pitch.')
flags.DEFINE_bool('repeat_last_dilation_level', False, 'If set, repeats the'
'last dilation rate.')
flags.DEFINE_integer('num_layers', 64, 'The number of convolutional layers'
'for architectures that do not use dilated convs.')
flags.DEFINE_integer('num_filters', 128,
'The number of filters for each convolutional '
'layer.')
flags.DEFINE_bool('use_residual', True, 'Add residual connections or not.')
flags.DEFINE_integer('batch_size', 20,
'The batch size for training and validating the model.')
# Mask related.
flags.DEFINE_string('maskout_method', 'orderless',
"The choices include: 'bernoulli' "
"and 'orderless' (which "
'invokes gradient rescaling as per NADE).')
flags.DEFINE_bool(
'mask_indicates_context', True,
'Feed inverted mask into convnet so that zero-padding makes sense.')
flags.DEFINE_bool('optimize_mask_only', False,
'Optimize masked predictions only.')
flags.DEFINE_bool('rescale_loss', True, 'Rescale loss based on context size.')
flags.DEFINE_integer(
'patience', 5,
'Number of epochs to wait for improvement before decaying learning rate.')
flags.DEFINE_float('corrupt_ratio', 0.5, 'Fraction of variables to mask out.')
# Run parameters.
flags.DEFINE_integer('num_epochs', 0,
'The number of epochs to train the model. Default '
'is 0, which means to run until terminated '
'manually.')
flags.DEFINE_integer('save_model_secs', 360,
'The number of seconds between saving each '
'checkpoint.')
flags.DEFINE_integer('eval_freq', 5,
'The number of training iterations before validation.')
flags.DEFINE_string(
'run_id', '',
'A run_id to add to directory names to avoid accidentally overwriting'
'when testing same setups.')
def estimate_popstats(unused_sv, sess, m, dataset, unused_hparams):
"""Averages over mini batches for population statistics for batch norm."""
print('Estimating population statistics...')
tfbatchstats, tfpopstats = list(
zip(*list(m.popstats_by_batchstat.items())))
nepochs = 3
nppopstats = [lib_util.AggregateMean('') for _ in tfpopstats]
for _ in range(nepochs):
batches = (
dataset.get_featuremaps().batches(size=m.batch_size,
shuffle=True))
for unused_step, batch in enumerate(batches):
feed_dict = batch.get_feed_dict(m.placeholders)
npbatchstats = sess.run(tfbatchstats, feed_dict=feed_dict)
for nppopstat, npbatchstat in zip(nppopstats, npbatchstats):
nppopstat.add(npbatchstat)
nppopstats = [nppopstat.mean for nppopstat in nppopstats]
_print_popstat_info(tfpopstats, nppopstats)
# Update tfpopstat variables.
for unused_j, (tfpopstat, nppopstat) in enumerate(zip(tfpopstats,
nppopstats)):
tfpopstat.load(nppopstat)
def run_epoch(supervisor, sess, m, dataset, hparams, eval_op, experiment_type,
epoch_count):
"""Runs an epoch of training or evaluate the model on given data."""
# reduce variance in validation loss by fixing the seed
print("!!!!!Running epoch!!!!!!")
data_seed = 123 if experiment_type == 'valid' else None
with lib_util.numpy_seed(data_seed):
batches = (
dataset.get_featuremaps().batches(
size=m.batch_size, shuffle=True, shuffle_rng=data_seed))
losses = lib_util.AggregateMean('losses')
losses_total = lib_util.AggregateMean('losses_total')
losses_mask = lib_util.AggregateMean('losses_mask')
losses_unmask = lib_util.AggregateMean('losses_unmask')
start_time = time.time()
for unused_step, batch in enumerate(batches):
# Evaluate the graph and run back propagation.
fetches = [
m.loss, m.loss_total, m.loss_mask, m.loss_unmask,
m.reduced_mask_size, m.reduced_unmask_size, m.learning_rate,
eval_op
]
feed_dict = batch.get_feed_dict(m.placeholders)
(loss, loss_total, loss_mask, loss_unmask, reduced_mask_size,
reduced_unmask_size, learning_rate, _) = sess.run(
fetches, feed_dict=feed_dict)
# Aggregate performances.
losses_total.add(loss_total, 1)
# Multiply the mean loss_mask by reduced_mask_size for
# aggregation as the mask size could be different for every batch.
losses_mask.add(loss_mask * reduced_mask_size, reduced_mask_size)
losses_unmask.add(loss_unmask * reduced_unmask_size,
reduced_unmask_size)
if hparams.optimize_mask_only:
losses.add(loss * reduced_mask_size, reduced_mask_size)
else:
losses.add(loss, 1)
# Collect run statistics.
run_stats = dict()
run_stats['loss_mask'] = losses_mask.mean
run_stats['loss_unmask'] = losses_unmask.mean
run_stats['loss_total'] = losses_total.mean
run_stats['loss'] = losses.mean
if experiment_type == 'train':
run_stats['learning_rate'] = float(learning_rate)
# Make summaries.
if FLAGS.log_progress:
summaries = tf.Summary()
for stat_name, stat in six.iteritems(run_stats):
value = summaries.value.add()
value.tag = '%s_%s' % (stat_name, experiment_type)
value.simple_value = stat
supervisor.summary_computed(sess, summaries, epoch_count)
tf.logging.info(
'%s, epoch %d: loss (mask): %.4f, loss (unmask): %.4f, '
'loss (total): %.4f, log lr: %.4f, time taken: %.4f',
experiment_type, epoch_count, run_stats['loss_mask'],
run_stats['loss_unmask'], run_stats['loss_total'],
(
np.log(run_stats['learning_rate'])
if 'learning_rate' in run_stats else 0
),
time.time() - start_time)
return run_stats['loss']
def main(unused_argv):
"""Builds the graph and then runs training and validation."""
print('TensorFlow version:', tf.__version__)
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.data_dir is None:
tf.logging.fatal('No input directory was provided.')
print(FLAGS.maskout_method, 'separate', FLAGS.separate_instruments)
hparams = _hparams_from_flags()
# Get data.
print('dataset:', FLAGS.dataset, FLAGS.data_dir)
print('current dir:', os.path.curdir)
train_data = lib_data.get_dataset(FLAGS.data_dir, hparams, 'train')
valid_data = lib_data.get_dataset(FLAGS.data_dir, hparams, 'valid')
print('# of train_data:', train_data.num_examples)
print('# of valid_data:', valid_data.num_examples)
if train_data.num_examples < hparams.batch_size:
print('reducing batch_size to %i' % train_data.num_examples)
hparams.batch_size = train_data.num_examples
train_data.update_hparams(hparams)
# Save hparam configs.
logdir = os.path.join(FLAGS.logdir, hparams.log_subdir_str)
tf.gfile.MakeDirs(logdir)
config_fpath = os.path.join(logdir, 'config')
tf.logging.info('Writing to %s', config_fpath)
with tf.gfile.Open(config_fpath, 'w') as p:
hparams.dump(p)
# Build the graph and subsequently running it for train and validation.
with tf.Graph().as_default():
no_op = tf.no_op()
# Build placeholders & training graph, & validation graph with reuse.
m = lib_graph.build_graph(is_training=True, hparams=hparams)
tf.get_variable_scope().reuse_variables()
mvalid = lib_graph.build_graph(is_training=False, hparams=hparams)
tracker = Tracker(
label='validation loss',
patience=FLAGS.patience,
decay_op=m.decay_op,
save_path=os.path.join(FLAGS.logdir,
hparams.log_subdir_str,
'best_model.ckpt'))
# Graph will be finalized after instantiating supervisor.
sv = tf.train.Supervisor(
logdir=logdir,
saver=(tf.train.Supervisor.USE_DEFAULT
if FLAGS.log_progress else None),
summary_op=None,
save_model_secs=FLAGS.save_model_secs)
with sv.PrepareSession() as sess:
epoch_count = 0
while epoch_count < FLAGS.num_epochs or not FLAGS.num_epochs:
if sv.should_stop():
break
# Run training.
run_epoch(sv, sess, m, train_data, hparams, m.train_op,
'train', epoch_count)
# Run validation.
if epoch_count % hparams.eval_freq == 0:
estimate_popstats(sv, sess, m, train_data, hparams)
loss = run_epoch(sv, sess, mvalid, valid_data, hparams, no_op,
'valid', epoch_count)
tracker(loss, sess)
if tracker.should_stop():
break
epoch_count += 1
print('best', tracker.label, tracker.best)
print('Done.')
return tracker.best
class Tracker(object):
"""Tracks the progress of training and checks if training should stop."""
def __init__(self, label, save_path, sign=-1, patience=5, decay_op=None):
self.label = label
self.sign = sign
self.best = np.inf
self.saver = tf.train.Saver()
self.save_path = save_path
self.patience = patience
# NOTE: age is reset with decay, but true_age is not
self.age = 0
self.true_age = 0
self.decay_op = decay_op
def __call__(self, loss, sess):
if self.sign * loss > self.sign * self.best:
if FLAGS.log_progress:
tf.logging.info('Previous best %s: %.4f.',
self.label, self.best)
tf.gfile.MakeDirs(os.path.dirname(self.save_path))
self.saver.save(sess, self.save_path)
tf.logging.info('Storing best model so far with loss %.4f at %s.' %
(loss, self.save_path))
self.best = loss
self.age = 0
self.true_age = 0
else:
self.age += 1
self.true_age += 1
if self.age > self.patience:
sess.run([self.decay_op])
self.age = 0
def should_stop(self):
return self.true_age > 5 * self.patience
def _print_popstat_info(tfpopstats, nppopstats):
"""Prints the average and std of population versus batch statistics."""
mean_errors = []
stdev_errors = []
for j, (tfpopstat, nppopstat) in enumerate(zip(tfpopstats, nppopstats)):
moving_average = tfpopstat.eval()
if j % 2 == 0:
mean_errors.append(abs(moving_average - nppopstat))
else:
stdev_errors.append(
abs(np.sqrt(moving_average) - np.sqrt(nppopstat)))
def flatmean(xs):
return np.mean(np.concatenate([x.flatten() for x in xs]))
print('average of pop mean/stdev errors: %g %g' % (flatmean(mean_errors),
flatmean(stdev_errors)))
print('average of batch mean/stdev: %g %g' %
(flatmean(nppopstats[0::2]),
flatmean([np.sqrt(ugh) for ugh in nppopstats[1::2]])))
def _hparams_from_flags():
"""Instantiate hparams based on flags set in FLAGS."""
keys = ("""
dataset quantization_level num_instruments separate_instruments
crop_piece_len architecture use_sep_conv num_initial_regular_conv_layers
sep_conv_depth_multiplier num_dilation_blocks dilate_time_only
repeat_last_dilation_level num_layers num_filters use_residual
batch_size maskout_method mask_indicates_context optimize_mask_only
rescale_loss patience corrupt_ratio eval_freq run_id
num_pointwise_splits interleave_split_every_n_layers
""".split())
hparams = lib_hparams.Hyperparameters(**dict(
(key, getattr(FLAGS, key)) for key in keys))
return hparams
if __name__ == '__main__':
tf.disable_v2_behavior()
tf.app.run()