-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcontentatscale_detect.py
95 lines (87 loc) · 3.04 KB
/
contentatscale_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python3
import httpx, re, os, time, urllib.parse
from typing import Optional, Dict, Tuple
API_URL = 'https://contentatscale.ai/ai-content-detector/'
def make_req(text : str) -> Optional[str]:
headers = {
'Origin': 'https://contentatscale.ai',
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/117.0',
'X-Requested-With': 'XMLHttpRequest',
'DNT': '1',
'Connection': 'keep-alive',
'Accept': '*/*',
'Referer': 'https://contentatscale.ai/ai-content-detector/'
}
data = 'content=' + urllib.parse.quote_plus(text) + '&action=checkaiscore'
c = httpx.Client(http2=True, timeout=60.0)
res = c.post(API_URL, headers=headers, data=data)
if res.status_code != 200:
print(res.text)
return None
if res.json().get('status') == 'Failure':
print(res.json())
return None
return res.json().get('score')
def classify_text(s : str) -> Optional[Tuple[str, float]]:
res = int(make_req(s)) / 100.0
if res is None:
print("Unable to classify!")
return None
else:
#print(res)
try:
res = float(res)
except TypeError as e:
print("Unable to convert " + str(res) + " to float!")
if res < 0.5:
return ('AI', 1 - res)
else:
return ('Human', res)
def run_on_file_chunked(filename : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]:
'''
Given a filename (and an optional chunk size) returns the score for the contents of that file.
This function chunks the file into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
with open(filename, 'r') as fp:
contents = fp.read()
return run_on_text_chunked(contents, chunk_size)
def run_on_text_chunked(contents : str, chunk_size : int = 3000) -> Optional[Tuple[str, float]]:
'''
Given a text (and an optional chunk size) returns the score for the contents of that string.
This function chunks the string into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
# Remove extra spaces and duplicate newlines.
contents = re.sub(' +', ' ', contents)
contents = re.sub('\t', '', contents)
contents = re.sub('\n+', '\n', contents)
contents = re.sub('\n ', '\n', contents)
res = classify_text(contents)
if res is None:
time.sleep(5)
res = classify_text(contents)
return res
start = 0
end = 0
chunks = []
while start + chunk_size < len(contents) and end != -1:
end = contents.rfind(' ', start, start + chunk_size + 1)
chunks.append(contents[start:end])
start = end + 1
chunks.append(contents[start:])
scores = []
for c in chunks:
scores.append(classify_text(c))
ssum : float = 0.0
for s in scores:
if s[0] == 'AI':
ssum -= s[1]
else:
ssum += s[1]
sa : float = ssum / len(scores)
if sa < 0:
return ('AI', abs(sa))
else:
return ('Human', abs(sa))