-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgptzero_detect.py
78 lines (70 loc) · 2.4 KB
/
gptzero_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python3
import requests, re, os
from typing import Optional, Dict, Tuple
API_KEY = os.getenv('GPTZERO_APIKEY')
API_URL = 'https://api.gptzero.me/v2/predict/text'
def make_req(text : str) -> Optional[Dict]:
headers = {
'X-Api-Key': API_KEY
}
data = {
'document': text,
}
res = requests.post(API_URL, headers=headers, json=data)
if res.status_code != 200:
print(res.text)
return [None]
return res.json().get('documents', [None])[0]
def classify_text(s : str) -> Optional[Tuple[str, float]]:
res = make_req(s)
if res is None:
print("Unable to classify!")
return None
else:
#print(res)
if res.get('average_generated_prob') > 0.5:
return ('AI', res.get('completely_generated_prob'))
else:
return ('Human', 1 - res.get('completely_generated_prob'))
def run_on_file_chunked(filename : str, chunk_size : int = 1025) -> Optional[Tuple[str, float]]:
'''
Given a filename (and an optional chunk size) returns the score for the contents of that file.
This function chunks the file into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
with open(filename, 'r') as fp:
contents = fp.read()
return run_on_text_chunked(contents, chunk_size)
def run_on_text_chunked(contents : str, chunk_size : int = 1025) -> Optional[Tuple[str, float]]:
'''
Given a text (and an optional chunk size) returns the score for the contents of that string.
This function chunks the string into at most chunk_size parts to score separately, then returns an average. This prevents a very large input
overwhelming the model.
'''
# Remove extra spaces and duplicate newlines.
contents = re.sub(' +', ' ', contents)
contents = re.sub('\t', '', contents)
contents = re.sub('\n+', '\n', contents)
contents = re.sub('\n ', '\n', contents)
start = 0
end = 0
chunks = []
while start + chunk_size < len(contents) and end != -1:
end = contents.rfind(' ', start, start + chunk_size + 1)
chunks.append(contents[start:end])
start = end + 1
chunks.append(contents[start:])
scores = []
for c in chunks:
scores.append(classify_text(c))
ssum : float = 0.0
for s in scores:
if s[0] == 'AI':
ssum -= s[1]
else:
ssum += s[1]
sa : float = ssum / len(scores)
if sa < 0:
return ('AI', abs(sa))
else:
return ('Human', abs(sa))