-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpreset_plot_rocs.py
92 lines (83 loc) · 2.88 KB
/
preset_plot_rocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import re
from junitparser import JUnitXml
MODEL = 'zippy-zlib'
PRESETS = range(0, 10)
SKIPCASES = ['gpt2', 'gpt3']
MAX_PER_CASE = 500
plt.figure()
for preset in PRESETS:
xml = JUnitXml.fromfile(f'{MODEL}-{preset}.xml')
cases = []
for suite in xml:
for case in suite:
cases.append(case)
truths = []
scores = []
per_case = {}
fails_per_case = {}
for c in cases:
if c.name is None:
print("ERROR")
continue
cname = re.sub('\[.*$', '', c.name)
if any(sub in cname for sub in SKIPCASES):
continue
if cname in per_case.keys():
per_case[cname] += 1
else:
per_case[cname] = 1
fails_per_case[cname] = 0
if per_case[cname] > MAX_PER_CASE:
continue
try:
score = float(c._elem.getchildren()[0].getchildren()[0].values()[1])
except:
continue
if 'human' in c.name:
truths.append(1)
if c.is_passed:
scores.append(score)
else:
fails_per_case[cname] += 1
scores.append(score * -1.0)
else: # AI
truths.append(-1.0)
if c.is_passed:
scores.append(score * -1.0)
else:
fails_per_case[cname] += 1
scores.append(score)
y_true = np.array(truths)
y_scores = np.array(scores)
print("Failures per case for " + MODEL + ' ' + str(preset))
#print(fails_per_case)
tf = 0
for k in fails_per_case.keys():
tf += fails_per_case[k]
print('Total fails: ' + str(tf))
tp = len(cases) - tf
# Compute the false positive rate (FPR), true positive rate (TPR), and threshold values
fpr, tpr, thresholds = roc_curve(y_true, y_scores)
gmeans = np.sqrt(tpr * (1-fpr))
ix = np.argmax(gmeans)
print('Best Threshold=%f, G-Mean=%.3f' % (thresholds[ix], gmeans[ix]))
#print(thresholds)
# calculate the g-mean for each threshold
# locate the index of the largest g-mean
# Calculate the area under the ROC curve (AUC)
roc_auc = auc(fpr, tpr)
# Plot the ROC curve
plt.plot(fpr, tpr, lw=2, label=f'{MODEL.split("-")[1].capitalize()}-{preset}: ROC curve (%Acc = {tp/len(cases):0.2f}; AUC = {roc_auc:0.2f})')
plt.scatter(fpr[ix], tpr[ix], marker='o', color='black')#, label=model.capitalize() + ': Best @ threshold = %0.2f' % thresholds[ix])
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--', label="Random classifier")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic for LLM detection')
plt.legend(loc="lower right")
plt.savefig('preset_ai_detect_roc.png')