-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathutils.py
114 lines (103 loc) · 3.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import numpy as np
from math import sqrt
from scipy import stats
from torch_geometric.data import InMemoryDataset, DataLoader
from torch_geometric import data as DATA
import torch
class TestbedDataset(InMemoryDataset):
def __init__(self, root='/tmp', dataset='davis',
xd=None, xt=None, y=None, transform=None,
pre_transform=None,smile_graph=None):
#root is required for save preprocessed data, default is '/tmp'
super(TestbedDataset, self).__init__(root, transform, pre_transform)
# benchmark dataset, default = 'davis'
self.dataset = dataset
if os.path.isfile(self.processed_paths[0]):
print('Pre-processed data found: {}, loading ...'.format(self.processed_paths[0]))
self.data, self.slices = torch.load(self.processed_paths[0])
else:
print('Pre-processed data {} not found, doing pre-processing...'.format(self.processed_paths[0]))
self.process(xd, xt, y,smile_graph)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
pass
#return ['some_file_1', 'some_file_2', ...]
@property
def processed_file_names(self):
return [self.dataset + '.pt']
def download(self):
# Download to `self.raw_dir`.
pass
def _download(self):
pass
def _process(self):
if not os.path.exists(self.processed_dir):
os.makedirs(self.processed_dir)
# Customize the process method to fit the task of drug-target affinity prediction
# Inputs:
# XD - list of SMILES, XT: list of encoded target (categorical or one-hot),
# Y: list of labels (i.e. affinity)
# Return: PyTorch-Geometric format processed data
def process(self, xd, xt, y,smile_graph):
assert (len(xd) == len(xt) and len(xt) == len(y)), "The three lists must be the same length!"
data_list = []
data_len = len(xd)
for i in range(data_len):
print('Converting SMILES to graph: {}/{}'.format(i+1, data_len))
smiles = xd[i]
target = xt[i]
labels = y[i]
# convert SMILES to molecular representation using rdkit
c_size, features, edge_index = smile_graph[smiles]
# make the graph ready for PyTorch Geometrics GCN algorithms:
GCNData = DATA.Data(x=torch.Tensor(features),
edge_index=torch.LongTensor(edge_index).transpose(1, 0),
y=torch.FloatTensor([labels]))
GCNData.target = torch.LongTensor([target])
GCNData.__setitem__('c_size', torch.LongTensor([c_size]))
# append graph, label and target sequence to data list
data_list.append(GCNData)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
print('Graph construction done. Saving to file.')
data, slices = self.collate(data_list)
# save preprocessed data:
torch.save((data, slices), self.processed_paths[0])
def rmse(y,f):
rmse = sqrt(((y - f)**2).mean(axis=0))
return rmse
def mse(y,f):
mse = ((y - f)**2).mean(axis=0)
return mse
def pearson(y,f):
rp = np.corrcoef(y, f)[0,1]
return rp
def spearman(y,f):
rs = stats.spearmanr(y, f)[0]
return rs
def ci(y,f):
ind = np.argsort(y)
y = y[ind]
f = f[ind]
i = len(y)-1
j = i-1
z = 0.0
S = 0.0
while i > 0:
while j >= 0:
if y[i] > y[j]:
z = z+1
u = f[i] - f[j]
if u > 0:
S = S + 1
elif u == 0:
S = S + 0.5
j = j - 1
i = i - 1
j = i-1
ci = S/z
return ci