This project is derived from Udacity's Deep learning course. We use a neural network to predict daily bike rental ridership.
We have two data files:
- day.csv
- hour.csv
Lets have a look at them!
• 15 tuples of day.csv
• 15 tuples of hour.csv
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5,
(self.input_nodes, self.hidden_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.hidden_nodes, self.output_nodes))
self.lr = learning_rate
self.activation_function = lambda x : 1/(1+np.exp(-x))