forked from eliben/pykaleidoscope
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chapter5.py
795 lines (654 loc) · 27.9 KB
/
chapter5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# Chapter 5 - Extending the language: Control flow
from collections import namedtuple
from ctypes import CFUNCTYPE, c_double
from enum import Enum
import llvmlite.ir as ir
import llvmlite.binding as llvm
# Each token is a tuple of kind and value. kind is one of the enumeration values
# in TokenKind. value is the textual value of the token in the input.
class TokenKind(Enum):
EOF = -1
DEF = -2
EXTERN = -3
IDENTIFIER = -4
NUMBER = -5
OPERATOR = -6
IF = -7
THEN = -8
ELSE = -9
FOR = -10
IN = -11
Token = namedtuple('Token', 'kind value')
class Lexer(object):
"""Lexer for Kaleidoscope.
Initialize the lexer with a string buffer. tokens() returns a generator that
can be queried for tokens. The generator will emit an EOF token before
stopping.
"""
def __init__(self, buf):
assert len(buf) >= 1
self.buf = buf
self.pos = 0
self.lastchar = self.buf[0]
self._keyword_map = {
'def': TokenKind.DEF,
'extern': TokenKind.EXTERN,
'if': TokenKind.IF,
'then': TokenKind.THEN,
'else': TokenKind.ELSE,
'for': TokenKind.FOR,
'in': TokenKind.IN,
}
def tokens(self):
while self.lastchar:
# Skip whitespace
while self.lastchar.isspace():
self._advance()
# Identifier or keyword
if self.lastchar.isalpha():
id_str = ''
while self.lastchar.isalnum():
id_str += self.lastchar
self._advance()
if id_str in self._keyword_map:
yield Token(kind=self._keyword_map[id_str], value=id_str)
else:
yield Token(kind=TokenKind.IDENTIFIER, value=id_str)
# Number
elif self.lastchar.isdigit() or self.lastchar == '.':
num_str = ''
while self.lastchar.isdigit() or self.lastchar == '.':
num_str += self.lastchar
self._advance()
yield Token(kind=TokenKind.NUMBER, value=num_str)
# Comment
elif self.lastchar == '#':
self._advance()
while self.lastchar and self.lastchar not in '\r\n':
self._advance()
elif self.lastchar:
# Some other char
yield Token(kind=TokenKind.OPERATOR, value=self.lastchar)
self._advance()
yield Token(kind=TokenKind.EOF, value='')
def _advance(self):
try:
self.pos += 1
self.lastchar = self.buf[self.pos]
except IndexError:
self.lastchar = ''
# AST hierarchy
class ASTNode(object):
def dump(self, indent=0):
raise NotImplementedError
class ExprAST(ASTNode):
pass
class NumberExprAST(ExprAST):
def __init__(self, val):
self.val = val
def dump(self, indent=0):
return '{0}{1}[{2}]'.format(
' ' * indent, self.__class__.__name__, self.val)
class VariableExprAST(ExprAST):
def __init__(self, name):
self.name = name
def dump(self, indent=0):
return '{0}{1}[{2}]'.format(
' ' * indent, self.__class__.__name__, self.name)
class BinaryExprAST(ExprAST):
def __init__(self, op, lhs, rhs):
self.op = op
self.lhs = lhs
self.rhs = rhs
def dump(self, indent=0):
s = '{0}{1}[{2}]\n'.format(
' ' * indent, self.__class__.__name__, self.op)
s += self.lhs.dump(indent + 2) + '\n'
s += self.rhs.dump(indent + 2)
return s
class IfExprAST(ExprAST):
def __init__(self, cond_expr, then_expr, else_expr):
self.cond_expr = cond_expr
self.then_expr = then_expr
self.else_expr = else_expr
def dump(self, indent=0):
prefix = ' ' * indent
s = '{0}{1}\n'.format(prefix, self.__class__.__name__)
s += '{0} Condition:\n{1}\n'.format(
prefix, self.cond_expr.dump(indent + 2))
s += '{0} Then:\n{1}\n'.format(
prefix, self.then_expr.dump(indent + 2))
s += '{0} Else:\n{1}'.format(
prefix, self.else_expr.dump(indent + 2))
return s
class ForExprAST(ExprAST):
def __init__(self, id_name, start_expr, end_expr, step_expr, body):
self.id_name = id_name
self.start_expr = start_expr
self.end_expr = end_expr
self.step_expr = step_expr
self.body = body
def dump(self, indent=0):
prefix = ' ' * indent
s = '{0}{1}\n'.format(prefix, self.__class__.__name__)
s += '{0} Start [{1}]:\n{2}\n'.format(
prefix, self.id_name, self.start_expr.dump(indent + 2))
s += '{0} End:\n{1}\n'.format(
prefix, self.end_expr.dump(indent + 2))
s += '{0} Step:\n{1}\n'.format(
prefix, self.step_expr.dump(indent + 2))
s += '{0} Body:\n{1}\n'.format(
prefix, self.body.dump(indent + 2))
return s
class CallExprAST(ExprAST):
def __init__(self, callee, args):
self.callee = callee
self.args = args
def dump(self, indent=0):
s = '{0}{1}[{2}]\n'.format(
' ' * indent, self.__class__.__name__, self.callee)
for arg in self.args:
s += arg.dump(indent + 2) + '\n'
return s[:-1] # snip out trailing '\n'
class PrototypeAST(ASTNode):
def __init__(self, name, argnames):
self.name = name
self.argnames = argnames
def dump(self, indent=0):
return '{0}{1}[{2}]'.format(
' ' * indent, self.__class__.__name__, ', '.join(self.argnames))
class FunctionAST(ASTNode):
def __init__(self, proto, body):
self.proto = proto
self.body = body
_anonymous_function_counter = 0
@classmethod
def create_anonymous(klass, expr):
"""Create an anonymous function to hold an expression."""
klass._anonymous_function_counter += 1
return klass(
PrototypeAST('_anon{0}'.format(klass._anonymous_function_counter),
[]),
expr)
def is_anonymous(self):
return self.proto.name.startswith('_anon')
def dump(self, indent=0):
s = '{0}{1}[{2}]\n'.format(
' ' * indent, self.__class__.__name__, self.proto.dump())
s += self.body.dump(indent + 2) + '\n'
return s
class ParseError(Exception): pass
class Parser(object):
"""Parser for the Kaleidoscope language.
After the parser is created, invoke parse_toplevel multiple times to parse
Kaleidoscope source into an AST.
"""
def __init__(self):
self.token_generator = None
self.cur_tok = None
# toplevel ::= definition | external | expression | ';'
def parse_toplevel(self, buf):
"""Given a string, returns an AST node representing it."""
self.token_generator = Lexer(buf).tokens()
self.cur_tok = None
self._get_next_token()
if self.cur_tok.kind == TokenKind.EXTERN:
return self._parse_external()
elif self.cur_tok.kind == TokenKind.DEF:
return self._parse_definition()
elif self._cur_tok_is_operator(';'):
self._get_next_token()
return None
else:
return self._parse_toplevel_expression()
def _get_next_token(self):
self.cur_tok = next(self.token_generator)
def _match(self, expected_kind, expected_value=None):
"""Consume the current token; verify that it's of the expected kind.
If expected_kind == TokenKind.OPERATOR, verify the operator's value.
"""
if (expected_kind == TokenKind.OPERATOR and
not self._cur_tok_is_operator(expected_value)):
raise ParseError('Expected "{0}"'.format(expected_value))
elif expected_kind != self.cur_tok.kind:
raise ParseError('Expected "{0}"'.format(expected_kind))
self._get_next_token()
_precedence_map = {'<': 10, '+': 20, '-': 20, '*': 40}
def _cur_tok_precedence(self):
"""Get the operator precedence of the current token."""
try:
return Parser._precedence_map[self.cur_tok.value]
except KeyError:
return -1
def _cur_tok_is_operator(self, op):
"""Query whether the current token is the operator op"""
return (self.cur_tok.kind == TokenKind.OPERATOR and
self.cur_tok.value == op)
# identifierexpr
# ::= identifier
# ::= identifier '(' expression* ')'
def _parse_identifier_expr(self):
id_name = self.cur_tok.value
self._get_next_token()
# If followed by a '(' it's a call; otherwise, a simple variable ref.
if not self._cur_tok_is_operator('('):
return VariableExprAST(id_name)
self._get_next_token()
args = []
if not self._cur_tok_is_operator(')'):
while True:
args.append(self._parse_expression())
if self._cur_tok_is_operator(')'):
break
self._match(TokenKind.OPERATOR, ',')
self._get_next_token() # consume the ')'
return CallExprAST(id_name, args)
# numberexpr ::= number
def _parse_number_expr(self):
result = NumberExprAST(self.cur_tok.value)
self._get_next_token() # consume the number
return result
# parenexpr ::= '(' expression ')'
def _parse_paren_expr(self):
self._get_next_token() # consume the '('
expr = self._parse_expression()
self._match(TokenKind.OPERATOR, ')')
return expr
# primary
# ::= identifierexpr
# ::= numberexpr
# ::= parenexpr
# ::= ifexpr
# ::= forexpr
def _parse_primary(self):
if self.cur_tok.kind == TokenKind.IDENTIFIER:
return self._parse_identifier_expr()
elif self.cur_tok.kind == TokenKind.NUMBER:
return self._parse_number_expr()
elif self._cur_tok_is_operator('('):
return self._parse_paren_expr()
elif self.cur_tok.kind == TokenKind.IF:
return self._parse_if_expr()
elif self.cur_tok.kind == TokenKind.FOR:
return self._parse_for_expr()
else:
raise ParseError('Unknown token when expecting an expression')
# ifexpr ::= 'if' expression 'then' expression 'else' expression
def _parse_if_expr(self):
self._get_next_token() # consume the 'if'
cond_expr = self._parse_expression()
self._match(TokenKind.THEN)
then_expr = self._parse_expression()
self._match(TokenKind.ELSE)
else_expr = self._parse_expression()
return IfExprAST(cond_expr, then_expr, else_expr)
# forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expr
def _parse_for_expr(self):
self._get_next_token() # consume the 'for'
id_name = self.cur_tok.value
self._match(TokenKind.IDENTIFIER)
self._match(TokenKind.OPERATOR, '=')
start_expr = self._parse_expression()
self._match(TokenKind.OPERATOR, ',')
end_expr = self._parse_expression()
# The step part is optional
if self._cur_tok_is_operator(','):
self._get_next_token()
step_expr = self._parse_expression()
else:
step_expr = None
self._match(TokenKind.IN)
body = self._parse_expression()
return ForExprAST(id_name, start_expr, end_expr, step_expr, body)
# binoprhs ::= (<binop> primary)*
def _parse_binop_rhs(self, expr_prec, lhs):
"""Parse the right-hand-side of a binary expression.
expr_prec: minimal precedence to keep going (precedence climbing).
lhs: AST of the left-hand-side.
"""
while True:
cur_prec = self._cur_tok_precedence()
# If this is a binary operator with precedence lower than the
# currently parsed sub-expression, bail out. If it binds at least
# as tightly, keep going.
# Note that the precedence of non-operators is defined to be -1,
# so this condition handles cases when the expression ended.
if cur_prec < expr_prec:
return lhs
op = self.cur_tok.value
self._get_next_token() # consume the operator
rhs = self._parse_primary()
next_prec = self._cur_tok_precedence()
# There are three options:
# 1. next_prec > cur_prec: we need to make a recursive call
# 2. next_prec == cur_prec: no need for a recursive call, the next
# iteration of this loop will handle it.
# 3. next_prec < cur_prec: no need for a recursive call, combine
# lhs and the next iteration will immediately bail out.
if cur_prec < next_prec:
rhs = self._parse_binop_rhs(cur_prec + 1, rhs)
# Merge lhs/rhs
lhs = BinaryExprAST(op, lhs, rhs)
# expression ::= primary binoprhs
def _parse_expression(self):
lhs = self._parse_primary()
# Start with precedence 0 because we want to bind any operator to the
# expression at this point.
return self._parse_binop_rhs(0, lhs)
# prototype ::= id '(' id* ')'
def _parse_prototype(self):
name = self.cur_tok.value
self._match(TokenKind.IDENTIFIER)
self._match(TokenKind.OPERATOR, '(')
argnames = []
while self.cur_tok.kind == TokenKind.IDENTIFIER:
argnames.append(self.cur_tok.value)
self._get_next_token()
self._match(TokenKind.OPERATOR, ')')
return PrototypeAST(name, argnames)
# external ::= 'extern' prototype
def _parse_external(self):
self._get_next_token() # consume 'extern'
return self._parse_prototype()
# definition ::= 'def' prototype expression
def _parse_definition(self):
self._get_next_token() # consume 'def'
proto = self._parse_prototype()
expr = self._parse_expression()
return FunctionAST(proto, expr)
# toplevel ::= expression
def _parse_toplevel_expression(self):
expr = self._parse_expression()
return FunctionAST.create_anonymous(expr)
class CodegenError(Exception): pass
class LLVMCodeGenerator(object):
def __init__(self):
"""Initialize the code generator.
This creates a new LLVM module into which code is generated. The
generate_code() method can be called multiple times. It adds the code
generated for this node into the module, and returns the IR value for
the node.
At any time, the current LLVM module being constructed can be obtained
from the module attribute.
"""
self.module = ir.Module()
# Current IR builder.
self.builder = None
# Manages a symbol table while a function is being codegen'd. Maps var
# names to ir.Value.
self.func_symtab = {}
def generate_code(self, node):
assert isinstance(node, (PrototypeAST, FunctionAST))
return self._codegen(node)
def _codegen(self, node):
"""Node visitor. Dispathces upon node type.
For AST node of class Foo, calls self._codegen_Foo. Each visitor is
expected to return a llvmlite.ir.Value.
"""
method = '_codegen_' + node.__class__.__name__
return getattr(self, method)(node)
def _codegen_NumberExprAST(self, node):
return ir.Constant(ir.DoubleType(), float(node.val))
def _codegen_VariableExprAST(self, node):
return self.func_symtab[node.name]
def _codegen_BinaryExprAST(self, node):
lhs = self._codegen(node.lhs)
rhs = self._codegen(node.rhs)
if node.op == '+':
return self.builder.fadd(lhs, rhs, 'addtmp')
elif node.op == '-':
return self.builder.fsub(lhs, rhs, 'subtmp')
elif node.op == '*':
return self.builder.fmul(lhs, rhs, 'multmp')
elif node.op == '<':
cmp = self.builder.fcmp_unordered('<', lhs, rhs, 'cmptmp')
return self.builder.uitofp(cmp, ir.DoubleType(), 'booltmp')
else:
raise CodegenError('Unknown binary operator', node.op)
def _codegen_IfExprAST(self, node):
# Emit comparison value
cond_val = self._codegen(node.cond_expr)
cmp = self.builder.fcmp_ordered(
'!=', cond_val, ir.Constant(ir.DoubleType(), 0.0))
# Create basic blocks to express the control flow, with a conditional
# branch to either then_bb or else_bb depending on cmp. else_bb and
# merge_bb are not yet attached to the function's list of BBs because
# if a nested IfExpr is generated we want to have a reasonably nested
# order of BBs generated into the function.
then_bb = self.builder.function.append_basic_block('then')
else_bb = ir.Block(self.builder.function, 'else')
merge_bb = ir.Block(self.builder.function, 'ifcont')
self.builder.cbranch(cmp, then_bb, else_bb)
# Emit the 'then' part
self.builder.position_at_start(then_bb)
then_val = self._codegen(node.then_expr)
self.builder.branch(merge_bb)
# Emission of then_val could have modified the current basic block. To
# properly set up the PHI, remember which block the 'then' part ends in.
then_bb = self.builder.block
# Emit the 'else' part
self.builder.function.basic_blocks.append(else_bb)
self.builder.position_at_start(else_bb)
else_val = self._codegen(node.else_expr)
self.builder.branch(merge_bb)
# Emit the merge ('ifcnt') block
self.builder.function.basic_blocks.append(merge_bb)
self.builder.position_at_start(merge_bb)
phi = self.builder.phi(ir.DoubleType(), 'iftmp')
phi.add_incoming(then_val, then_bb)
phi.add_incoming(else_val, else_bb)
return phi
def _codegen_ForExprAST(self, node):
# Output this as:
# ...
# start = startexpr
# goto loop
# loop:
# variable = phi [start, loopheader], [nextvariable, loopend]
# ...
# bodyexpr
# ...
# loopend:
# step = stepexpr
# nextvariable = variable + step
# endcond = endexpr
# br endcond, loop, endloop
# outloop:
# Emit the start expr first, without the variable in scope.
start_val = self._codegen(node.start_expr)
preheader_bb = self.builder.block
loop_bb = self.builder.function.append_basic_block('loop')
# Insert an explicit fall through from the current block to loop_bb
self.builder.branch(loop_bb)
self.builder.position_at_start(loop_bb)
# Start the PHI node with an entry for start
phi = self.builder.phi(ir.DoubleType(), node.id_name)
phi.add_incoming(start_val, preheader_bb)
# Within the loop, the variable is defined equal to the PHI node. If it
# shadows an existing variable, we have to restore it, so save it now.
oldval = self.func_symtab.get(node.id_name)
self.func_symtab[node.id_name] = phi
# Emit the body of the loop. This, like any other expr, can change the
# current BB. Note that we ignore the value computed by the body.
body_val = self._codegen(node.body)
if node.step_expr is None:
stepval = ir.Constant(ir.DoubleType(), 1.0)
else:
stepval = self._codegen(node.step_expr)
nextvar = self.builder.fadd(phi, stepval, 'nextvar')
# Compute the end condition
endcond = self._codegen(node.end_expr)
cmp = self.builder.fcmp_ordered(
'!=', endcond, ir.Constant(ir.DoubleType(), 0.0),
'loopcond')
# Create the 'after loop' block and insert it
loop_end_bb = self.builder.block
after_bb = self.builder.function.append_basic_block('afterloop')
# Insert the conditional branch into the end of loop_end_bb
self.builder.cbranch(cmp, loop_bb, after_bb)
# New code will be inserted into after_bb
self.builder.position_at_start(after_bb)
# Add a new entry to the PHI node for the backedge
phi.add_incoming(nextvar, loop_end_bb)
# Remove the loop variable from the symbol table; if it shadowed an
# existing variable, restore that.
if oldval is None:
del self.func_symtab[node.id_name]
else:
self.func_symtab[node.id_name] = oldval
# The 'for' expression always returns 0
return ir.Constant(ir.DoubleType(), 0.0)
def _codegen_CallExprAST(self, node):
callee_func = self.module.globals.get(node.callee, None)
if callee_func is None or not isinstance(callee_func, ir.Function):
raise CodegenError('Call to unknown function', node.callee)
if len(callee_func.args) != len(node.args):
raise CodegenError('Call argument length mismatch', node.callee)
call_args = [self._codegen(arg) for arg in node.args]
return self.builder.call(callee_func, call_args, 'calltmp')
def _codegen_PrototypeAST(self, node):
funcname = node.name
# Create a function type
func_ty = ir.FunctionType(ir.DoubleType(),
[ir.DoubleType()] * len(node.argnames))
# If a function with this name already exists in the module...
if funcname in self.module.globals:
# We only allow the case in which a declaration exists and now the
# function is defined (or redeclared) with the same number of args.
existing_func = self.module[funcname]
if not isinstance(existing_func, ir.Function):
raise CodegenError('Function/Global name collision', funcname)
if not existing_func.is_declaration():
raise CodegenError('Redifinition of {0}'.format(funcname))
if len(existing_func.function_type.args) != len(func_ty.args):
raise CodegenError(
'Redifinition with different number of arguments')
func = self.module.globals[funcname]
else:
# Otherwise create a new function
func = ir.Function(self.module, func_ty, funcname)
# Set function argument names from AST
for i, arg in enumerate(func.args):
arg.name = node.argnames[i]
self.func_symtab[arg.name] = arg
return func
def _codegen_FunctionAST(self, node):
# Reset the symbol table. Prototype generation will pre-populate it with
# function arguments.
self.func_symtab = {}
# Create the function skeleton from the prototype.
func = self._codegen(node.proto)
# Create the entry BB in the function and set the builder to it.
bb_entry = func.append_basic_block('entry')
self.builder = ir.IRBuilder(bb_entry)
retval = self._codegen(node.body)
self.builder.ret(retval)
return func
class KaleidoscopeEvaluator(object):
"""Evaluator for Kaleidoscope expressions.
Once an object is created, calls to evaluate() add new expressions to the
module. Definitions (including externs) are only added into the IR - no
JIT compilation occurs. When a toplevel expression is evaluated, the whole
module is JITed and the result of the expression is returned.
"""
def __init__(self):
llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()
self.codegen = LLVMCodeGenerator()
self._add_builtins(self.codegen.module)
self.target = llvm.Target.from_default_triple()
def evaluate(self, codestr, optimize=True, llvmdump=False):
"""Evaluate code in codestr.
Returns None for definitions and externs, and the evaluated expression
value for toplevel expressions.
"""
# Parse the given code and generate code from it
ast = Parser().parse_toplevel(codestr)
self.codegen.generate_code(ast)
if llvmdump:
print('======== Unoptimized LLVM IR')
print(str(self.codegen.module))
# If we're evaluating a definition or extern declaration, don't do
# anything else. If we're evaluating an anonymous wrapper for a toplevel
# expression, JIT-compile the module and run the function to get its
# result.
if not (isinstance(ast, FunctionAST) and ast.is_anonymous()):
return None
# Convert LLVM IR into in-memory representation
llvmmod = llvm.parse_assembly(str(self.codegen.module))
# Optimize the module
if optimize:
pmb = llvm.create_pass_manager_builder()
pmb.opt_level = 2
pm = llvm.create_module_pass_manager()
pmb.populate(pm)
pm.run(llvmmod)
if llvmdump:
print('======== Optimized LLVM IR')
print(str(llvmmod))
# Create a MCJIT execution engine to JIT-compile the module. Note that
# ee takes ownership of target_machine, so it has to be recreated anew
# each time we call create_mcjit_compiler.
target_machine = self.target.create_target_machine()
with llvm.create_mcjit_compiler(llvmmod, target_machine) as ee:
ee.finalize_object()
if llvmdump:
print('======== Machine code')
print(target_machine.emit_assembly(llvmmod))
fptr = CFUNCTYPE(c_double)(ee.get_function_address(ast.proto.name))
result = fptr()
return result
def _add_builtins(self, module):
# The C++ tutorial adds putchard() simply by defining it in the host C++
# code, which is then accessible to the JIT. It doesn't work as simply
# for us; but luckily it's very easy to define new "C level" functions
# for our JITed code to use - just emit them as LLVM IR. This is what
# this method does.
# Add the declaration of putchar
putchar_ty = ir.FunctionType(ir.IntType(32), [ir.IntType(32)])
putchar = ir.Function(module, putchar_ty, 'putchar')
# Add putchard
putchard_ty = ir.FunctionType(ir.DoubleType(), [ir.DoubleType()])
putchard = ir.Function(module, putchard_ty, 'putchard')
irbuilder = ir.IRBuilder(putchard.append_basic_block('entry'))
ival = irbuilder.fptoui(putchard.args[0], ir.IntType(32), 'intcast')
irbuilder.call(putchar, [ival])
irbuilder.ret(ir.Constant(ir.DoubleType(), 0))
#---- Some unit tests ----#
import unittest
class TestEvaluator(unittest.TestCase):
def test_basic_if(self):
e = KaleidoscopeEvaluator()
e.evaluate('def foo(a b) a * if a < b then a + 1 else b + 1')
self.assertEqual(e.evaluate('foo(3, 4)'), 12)
self.assertEqual(e.evaluate('foo(5, 4)'), 25)
def test_nested_if(self):
e = KaleidoscopeEvaluator()
e.evaluate('''
def foo(a b c)
if a < b
then if a < c then a * 2 else c * 2
else b * 2''')
self.assertEqual(e.evaluate('foo(1, 20, 300)'), 2)
self.assertEqual(e.evaluate('foo(10, 2, 300)'), 4)
self.assertEqual(e.evaluate('foo(100, 2000, 30)'), 60)
def test_for(self):
# For doesn't return anything, so just make sure evaluating it doesn't
# crash.
e = KaleidoscopeEvaluator()
e.evaluate('''
def foo(a b c)
if a < b
then for x = 1.0, x < b, c in x+a+c*b
else c * 2''')
self.assertEqual(e.evaluate('foo(1, 2, 3)'), 0)
self.assertEqual(e.evaluate('foo(3, 2, 30)'), 60)
if __name__ == '__main__':
# Evaluate some code.
kalei = KaleidoscopeEvaluator()
kalei.evaluate('def foo(a b) for x = 65, x < a, b in putchard(x)')
# We call these for their side effect of printing to stdout, so don't care
# about the return value.
kalei.evaluate('foo(79, 1)')
kalei.evaluate('putchard(10)')