forked from facebookresearch/maskrcnn-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
e2e_mask_rcnn_fbnet_xirb16d_dsmask_600.yaml
executable file
·52 lines (52 loc) · 1.25 KB
/
e2e_mask_rcnn_fbnet_xirb16d_dsmask_600.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: FBNet
FBNET:
ARCH: "xirb16d_dsmask"
BN_TYPE: "bn"
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
DET_HEAD_LAST_SCALE: 0.0
RPN:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 200
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 256
ROI_BOX_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head
NUM_CLASSES: 81
ROI_MASK_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head_mask
PREDICTOR: "MaskRCNNConv1x1Predictor"
RESOLUTION: 12
SHARE_BOX_FEATURE_EXTRACTOR: False
MASK_ON: True
DATASETS:
TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
TEST: ("coco_2014_minival",)
SOLVER:
BASE_LR: 0.06
WARMUP_FACTOR: 0.1
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 128 # for 8GPUs
# TEST:
# IMS_PER_BATCH: 8
INPUT:
MIN_SIZE_TRAIN: (600, )
MAX_SIZE_TRAIN: 1000
MIN_SIZE_TEST: 600
MAX_SIZE_TEST: 1000
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]