forked from fishaudio/Bert-VITS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
285 lines (267 loc) · 9.05 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
版本管理、兼容推理及模型加载实现。
版本说明:
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
特殊版本说明:
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
2.3:当前版本
"""
# from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
from typing import Union
import torch
import commons
import utils
from models import SynthesizerTrn
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from text.symbols import symbols
# 当前版本信息
latest_version = "2.3"
# def get_emo_(reference_audio, emotion, sid):
# emo = (
# torch.from_numpy(get_emo(reference_audio))
# if reference_audio and emotion == -1
# else torch.FloatTensor(
# np.load(f"emo_clustering/{sid}/cluster_center_{emotion}.npy")
# )
# )
# return emo
def get_net_g(model_path: str, version: str, device: str, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.randn(1024, len(phone))
en_bert = torch.randn(1024, len(phone))
elif language_str == "JP":
bert = torch.randn(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.randn(1024, len(phone))
elif language_str == "EN":
bert = torch.randn(1024, len(phone))
ja_bert = torch.randn(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
skip_start=False,
skip_end=False,
style_text=None,
style_weight=0.7,
):
# 在此处实现当前版本的推理
# emo = get_emo_(reference_audio, emotion, sid)
# if isinstance(reference_audio, np.ndarray):
# emo = get_clap_audio_feature(reference_audio, device)
# else:
# emo = get_clap_text_feature(emotion, device)
# emo = torch.squeeze(emo, dim=1)
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
# emo = get_emo_(reference_audio, emotion, sid)
# if isinstance(reference_audio, np.ndarray):
# emo = get_clap_audio_feature(reference_audio, device)
# else:
# emo = get_clap_text_feature(emotion, device)
# emo = torch.squeeze(emo, dim=1)
for idx, (txt, lang) in enumerate(zip(text, language)):
_skip_start = (idx != 0) or (skip_start and idx == 0)
_skip_end = (idx != len(language) - 1) or skip_end
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, lang, hps, device)
if _skip_start:
temp_bert = temp_bert[:, 3:]
temp_ja_bert = temp_ja_bert[:, 3:]
temp_en_bert = temp_en_bert[:, 3:]
temp_phones = temp_phones[3:]
temp_tones = temp_tones[3:]
temp_lang_ids = temp_lang_ids[3:]
if _skip_end:
temp_bert = temp_bert[:, :-2]
temp_ja_bert = temp_ja_bert[:, :-2]
temp_en_bert = temp_en_bert[:, :-2]
temp_phones = temp_phones[:-2]
temp_tones = temp_tones[:-2]
temp_lang_ids = temp_lang_ids[:-2]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
# emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio