-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdiffevo.py
67 lines (65 loc) · 3.81 KB
/
diffevo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
def differential_evolution(fobj, bounds, mut=0.8, crossprob=0.7, popsize=30, gens=1000, mode='best/1'):
# Gets number of parameters (length of genome vector)
num_params = len(bounds)
# Initializes the population genomes with values drawn from uniform distribution in the range [0,1]
pop = np.random.rand(popsize, num_params)
# Gets the boundaries for each parameter to scale the population genomes
min_b, max_b = np.asarray(bounds).T
# Scales the population genomes from the range [0,1] to the range specified by the parameter boundaries
diff = np.fabs(min_b - max_b)
pop_scaled = min_b + pop * diff
# Evaluates fitness for each individual in the population by calculating the objective to minimize
unfitness = np.asarray([fobj(ind) for ind in pop_scaled])
# Gets the best individual of the population
best_idx = np.argmin(unfitness)
best = pop_scaled[best_idx]
for i in range(gens):
print('Best unfitness in generation %d: %f' % (i + 1, unfitness[best_idx]))
# For each individual:
for j in range(popsize):
# Selects three individuals from the population different than himself(no jerking off) for reproduction
if mode == 'best/1':
idxs = [idx for idx in range(popsize) if (idx != j and idx != best_idx)]
a = best
b, c = pop[np.random.choice(idxs, 2, replace=False)]
mutant = np.clip(a + mut * (b - c), 0, 1)
elif mode == 'best/2':
idxs = [idx for idx in range(popsize) if (idx != j and idx != best_idx)]
a = best
b, c, d, e = pop[np.random.choice(idxs, 4, replace=False)]
# Generates a mutant by applying the differential mutation (and clips to keep in range [0,1])
mutant = np.clip(a + mut * (b - c + d - e), 0, 1)
elif mode == 'rand/1':
idxs = [idx for idx in range(popsize) if idx != j]
a, b, c = pop[np.random.choice(idxs, 3, replace=False)]
# Generates a mutant by applying the differential mutation (and clips to keep in range [0,1])
mutant = np.clip(a + mut * (b - c), 0, 1)
elif mode == 'rand/2':
idxs = [idx for idx in range(popsize) if idx != j]
a, b, c, d, e = pop[np.random.choice(idxs, 5, replace=False)]
# Generates a mutant by applying the differential mutation (and clips to keep in range [0,1])
mutant = np.clip(a + mut * (b - c + d - e), 0, 1)
# Selects parameters of the individual to crossover with the mutant with the probability of crossover
cross_points = np.random.rand(num_params) < crossprob
# If some parameter results to need crossover ...
if not np.any(cross_points):
# selects the index of that parameter for crossover
cross_points[np.random.randint(0, num_params)] = True
# The parameters of the individual's genome that require crossover gets changed for those of the mutant,
# producing a new individual
trial = np.where(cross_points, mutant, pop[j])
# Scales the genome of the new individual from the range [0,1] to the range specified by the parameter
# boundaries
trial_denorm = min_b + trial * diff
# Evaluates fitness of new individual
f = fobj(trial_denorm)
# If better than the previous one, keeps the new one
if f < unfitness[j]:
unfitness[j] = f
pop[j] = trial
# If better than the best one so far, updates the record
if f < unfitness[best_idx]:
best_idx = j
best = trial_denorm
yield best, unfitness[best_idx]