Skip to content

Latest commit

 

History

History
103 lines (91 loc) · 4.19 KB

README.md

File metadata and controls

103 lines (91 loc) · 4.19 KB

text_classifier_tasks

文本分类方法集合

1. 环境说明

tensorflow==1.14.0
keras==2.3.1

2.TfidfVectorizer、CountVectorizer 和 TfidfTransformer

TfidfVectorizer、CountVectorizer 和 TfidfTransformer 是 sklearn 中处理自然语言常用的工具。
TfidfVectorizer 相当于 CountVectorizer + TfidfTransformer

2.1. CountVectorizer

CountVectorizer 的作用是将文本文档转换为计数的稀疏矩阵。下面举一个具体的例子来说明(代码来自于官方文档)。

from sklearn.feature_extraction.text import CountVectorizer
# 定义一个 list,其中每个元素是一个文档(一个句子)
corpus = [
  'This is the first document.',
  'This document is the second document.',
  'And this is the third one.',
  'Is this the first document?',
]
vectorizer = CountVectorizer()
# 将文本数据转换为计数的稀疏矩阵
X = vectorizer.fit_transform(corpus)
# 查看每个单词的位置
print(vectorizer.get_feature_names())
# 输出: ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']

# 由于 X 存储为稀疏矩阵,需要转换为 array 才能查看
print(X.toarray())
# 输出:
# [[0 1 1 1 0 0 1 0 1]
# [0 2 0 1 0 1 1 0 1]
# [1 0 0 1 1 0 1 1 1]
# [0 1 1 1 0 0 1 0 1]]

vectorizer.get_feature_names() 包含了数据中出现的所有单词去重后的集合,相当于一个词典。
当然你也可以给 CountVectorizer 提供一个单独的词典,否则 CountVectorizer 会自己从数据中学习到词典。

X.toarray() 是查看文档转化后的计数矩阵。
比如矩阵的第一行 [0 1 1 1 0 0 1 0 1] 对应于文档中的第一句 "This is the first document.",表示词典中对应位置的单词出现的次数。
X.toarray() 的维度是 (4,9),可以看到转化之后的计数矩阵的元素是 4,每个元素的长度固定为 9,这里的 9 就是字典的长度。

2.2. TfidfTransformer

使用 TfidfTransformer 如下,输出的 tf-idf 矩阵维度也是 (4,9)

from sklearn.feature_extraction.text import TfidfTransformer

transform = TfidfTransformer()    
Y = transform.fit_transform(X)   # 这里的输入是上面文档的计数矩阵
print(Y.toarray())               # 输出转换为tf-idf后的 Y 矩阵
# 输出为:
# [[0.        0.46979139 0.58028582 0.38408524 0.         0.         0.38408524 0.         0.38408524]
# [0.         0.6876236  0.         0.28108867 0.         0.53864762 0.28108867 0.         0.28108867]
# [0.51184851 0.         0.         0.26710379 0.51184851 0.         0.26710379 0.51184851 0.26710379]
# [0.         0.46979139 0.58028582 0.38408524 0.         0.         0.38408524 0.         0.38408524]]

2.3. TfidfVectorizer

TfidfVectorizer 相当于 CountVectorizer 和 TfidfTransformer 的结合使用。
上面代码先调用了 CountVectorizer,然后调用了 TfidfTransformer。使用 TfidfVectorizer 可以简化代码如下:

# 把每个设备的 app 列表转换为字符串,以空格分隔
apps=deviceid_packages['apps'].apply(lambda x:' '.join(x)).tolist()
vectorizer=CountVectorizer()
transformer=TfidfTransformer()
# 原来的 app 列表 转换为计数的稀疏矩阵。
cntTf = vectorizer.fit_transform(apps)
# 得到 tf-idf 矩阵
tfidf=transformer.fit_transform(cntTf)
# 得到所有的 APP 列表,相当于词典
word=vectorizer.get_feature_names()

3. 模型结果

模型 accuracy 备注
knn 0.5514
decision tree 0.4317
random forest 0.4856
logistic regression 0.5133
native bayes 0.5383
svm 0.5583
xgboost 0.5190
lightgbm 0.5106
fasttext 0.5329
textcnn 0.5468
bert 0.6098
bert+textcnn 0.5937 将bert当word-embedding,
textcnn输入为bert输出
bert+textcnn2 0.5972 将bert输出cls拼接textcnn输出,
textcnn输入为bert输入中token经过独立embedding
bilstm 0.4821
bilstm+attention 0.5264
nezha 0.6110
bert+rdrop 0.6152
bert+adversarial_training 0.6110
bert+gradient_penalty 0.6137
GAU 0.6172

说明1:以上结果未经过详尽的调参,只是一个参考结果,调参后可能效果更佳~
说明2:bert+textcnn效果变差,可参考https://www.zhihu.com/question/477075127