-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdigitocr.py
152 lines (108 loc) · 3.57 KB
/
digitocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import PIL
from PIL import Image
import numpy as np
data = {}
redData = {}
digits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "null"]
digitsMap = {
"D": digits,
"A": digits + ["A", "B", "C", "D", "E", "F"],
"B": ["0", "1", "null"],
"T": ["0", "1", "2", "3", "null"],
}
MONO = True
IMAGE_SIZE = 7
BLOCK_SIZE = IMAGE_SIZE + 1
IMAGE_MULT = 2
GAP = (BLOCK_SIZE - IMAGE_SIZE) * IMAGE_MULT
SCALED_IMAGE_SIZE = IMAGE_SIZE * IMAGE_MULT
def finalImageSize(numDigits):
return ((BLOCK_SIZE) * numDigits - 1) * IMAGE_MULT, SCALED_IMAGE_SIZE
def setupColour(prefix, outputDict, digitList):
# setup white digits
for digit in digitList:
filename = prefix + str(digit).lower() + ".png"
img = Image.open(filename)
img = img.convert("L")
if IMAGE_MULT != 1:
img = img.resize(
(SCALED_IMAGE_SIZE, SCALED_IMAGE_SIZE), PIL.Image.ANTIALIAS
)
img = img.getdata()
img = np.asarray(img)
img = np.reshape(img, (SCALED_IMAGE_SIZE, SCALED_IMAGE_SIZE))
outputDict[digit] = img
def setupData():
setupColour("./sprite_templates/", data, digitsMap["A"]) # setup white
setupColour("./sprite_templates/red", redData, digitsMap["D"]) # setup red
def getDigit(img, pattern, startX, startY, red):
template = redData if red else data
validDigits = digitsMap[pattern]
scores = {}
# img in y, x format
subImage = img[:, startX : startX + SCALED_IMAGE_SIZE]
for digit in validDigits:
diff = np.subtract(subImage, template[digit])
diff = np.abs(diff)
scores[digit] = np.sum(diff)
lowest_score = float("inf")
lowest_digit = None
for digit, score in scores.items():
if score < lowest_score:
lowest_score = score
lowest_digit = digit
return lowest_digit, lowest_score
# convert to black/white, with custom threshold
def contrastImg(img):
if MONO:
img = img.convert("L")
return img
def convertImg(img, count, show):
img = contrastImg(img)
img = img.resize(finalImageSize(count), PIL.Image.ANTIALIAS)
if show:
img.show()
img = img.getdata()
img = np.asarray(img)
img = np.reshape(img, (SCALED_IMAGE_SIZE, -1)) # img is in y,x format
return img
# used for autocalibration.
def scoreImage0(img, digitPattern):
score = []
count = len(digitPattern)
img = convertImg(img, count, False)
for (i, pattern) in enumerate(digitPattern):
result = getDigit(img, pattern, i * (BLOCK_SIZE * IMAGE_MULT), 0, False)
if result[0] == "null":
return None
else:
score.append(result[1])
return sum(score)
def scoreImage(img, digitPattern, show=False, red=False):
count = len(digitPattern)
img = convertImg(img, count, show)
label = ""
value = 0
for (i, pattern) in enumerate(digitPattern):
if pattern == "X":
result = "X"
else:
result = getDigit(img, pattern, i * (BLOCK_SIZE * IMAGE_MULT), 0, red)[0]
if result == "null":
return None, None
else:
value += int(result, 16) * (10 ** (count - i - 1))
label += result
return label, value
setupData()
def testFastOCR():
setupData()
import nestris_ocr.utils.time as time
t = time.time()
img = Image.open("nestris_ocr/assets/test/score.png")
for i in range(10000):
scoreImage(img, "ADDDDD")
result = time.time() - t
print("10000 iterations took:" + str(result) + " seconds")
if __name__ == "__main__":
testFastOCR()