diff --git a/README.md b/README.md
index 88b27af..0fe5dcb 100644
--- a/README.md
+++ b/README.md
@@ -1,64 +1,3 @@
# American Time Use Analysis
-## Description
-
-Use the U.S. Department of Labor's data on Americans' time use for research and analysis.
-
-## Objectives
-
-### Learning Objectives
-
-After completing this assignment, you should understand:
-
-* How to use public data for analysis
-* How to translate data from CSVs to relational databases
-* How to publish your own data analysis as a notebook
-
-### Performance Objectives
-
-After completing this assignment, you should be able to:
-
-* Use pandas to parse and analyze data
-* Use matplotlib to chart data
-* Clean data
-
-## Details
-
-### Deliverables
-
-* A Git repo called atus-analysis containing at least:
- * `README.md` file explaining how to run your project
- * a `requirements.txt` file
- * an IPython notebook with your analysis
- * a suite of tests for your project
-
-### Requirements
-
-* Passing unit tests
-* No PEP8 or Pyflakes warnings or errors
-
-## Normal Mode
-
-The U.S. Bureau of Labor Statistics publishes yearly data about Americans' use
-of their time: [American Time Use Survey](http://www.bls.gov/tus/home.htm#data).
-This data is used to find out information like how many hours the average person
-spends per day doing household activities. You can see
-[the 2013 survey results](http://www.bls.gov/news.release/atus.nr0.htm)
-for more examples. You should use these results to double-check your logic as well.
-
-You will download the 2013 files and use these to do analysis. The questions you are trying to answer are up to you, but they
-should at least:
-
-* Compare different populations (people with children and people without, people of differing age groups, men and women, or other groupings)
-* Answer macro-level questions and micro-level questions (for example, the amount of leisure for the macro-level, the types of things people do for leisure for the micro-level)
-
-Your final analysis should be in the form of an IPython Notebook with both
-narrative analysis and supporting charts. Your supporting code should be in
-normal Python files.
-
-
-
-## Additional Resources
-
-* [How to use ATUS microdata files](http://www.bls.gov/tus/howto.htm)
-* [ATUS Coding Lexicon - you will need this](http://www.bls.gov/tus/lexicons.htm)
+The ipython notebook (atus_analysis.ipynb) has my findings in it, with the functions all contained in the data_analysis.py file.
diff --git a/atus_analysis.ipynb b/atus_analysis.ipynb
new file mode 100644
index 0000000..00a87c2
--- /dev/null
+++ b/atus_analysis.ipynb
@@ -0,0 +1,307 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import re\n",
+ "import sys\n",
+ "sys.path.append('/Users/Hannah/Documents/PythonProjects/atus-analysis/atus_analysis')\n",
+ "from data_analysis import *\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(7.3016452733976838, 3.9399426598089073, 4.0832551717906513)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(amt_leisure_time_by_age())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Checking methods against ATUS conclusions:
\n",
+ "People ages 25-24 spend 4.1 hours on leisure activities
\n",
+ "People ages 35-44 spend 4 hours on leisure activities
\n",
+ "People age 75 and above spend 7.3 hours on leisure activities
"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "result = corr_sports_school()\n",
+ "new_result = result.ix[1:]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEVCAYAAAAPRfkLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHWlJREFUeJzt3X24XWV55/Hvz0QDSEiMDgFCSCwENIogdMCK1FOZMhlL\nIXO1QpiWNzPOlIwGtbQmTkexTqvRa0QYBzq0aF6UlAiCM4KRSN1qh4HYSgQJkYAE8mISGghIESeR\ne/5Yz15n5eScfTb77Jy19lm/z3Wd66z1rJd9773W2fdaz/3sfRQRmJmZAbyi7ADMzKw6nBTMzCzn\npGBmZjknBTMzyzkpmJlZzknBzMxyTgrWNkmbJJ11APbbkDS/2/vtlKQzJW0oO466a/c4SFos6a9H\nI6Y6cFLoUSN5g5b0Dkn3SNotaZekv5f0621sGumn2wbdr6R5kh4fpH28pJ2S3t3Jg0n6A0k/Tz8v\nSHqpMP9cRHw/It7Qyb47iKXTYzHSx22ZiCXNHPC6NH/ec6Bja2r3OETEpyLifaMRUx04KfSujt6g\nJR0GfAO4BngNMA34BPDLrkbXHbcBkyW9c0D7HOBXwOpOdhoRX4mIiRExEfg3wNbmfEQcNrKQ21fy\nsWj33JlUeG0mRsRXuxmEpHHd3J+NnJPCGCDp0nSF+VlJT0v6qaQ5Q6x+PBARcXNkXoyINRHxYGF/\n75O0XtJzkh6SdHJh+7dK+lG6sv1bSRMGbLcxXfF+XdKRhWVvl/SDtN1aSb8x3POKiF8Cq4CLByy6\nGLgpIl6S9DpJ35D0THrc70lSGy9bHtp+DVKfpM2F+U2SrpT0QLpavlHSVEnflPSspDWSJhfWf1u6\n+n9G0rpBklpTy2ORjuv/kfTf0+v2sKR3FR5nUoplm6Qtkj4p6RWFbQc9JyT9BXAm8IX0fK59Ga8X\nkl4l6X5J70/z41Kcf5bmj5J0a7qb+6mkDxS2vUrSLZJWSHoWuETSFElfkrQ1xXrbEMfhI+l5Pidp\nQ/O1SPtckaabdzgXS3pC0lOSPlrYx8GSlqXHWS/pT4uPYUBE+KcHf4DHgXel6UuB/wfMJ3uT+yOy\nq9/BtpsI/BOwlOyK+zUDlr8H2AKcmuaPBY5J05uAe4EjyK5s1wP/MS17F/AUcDLwKuBa4Ltp2RTg\nGeAPyC5E5gFPNx8b+A7w3iHifTvwLHBQmp8EvAC8Jc1/CrgeGJd+zniZr2MfsLlVW3qt7wH+BXAU\nsAP4IXASMAG4G/hYWndaen3npPl/leZf18GxuBTYA1yRntv5wG5gclp+W3ruB6fY7gP+QzvnRKvX\nPC2fCbwEjBti+ZvSMXwD8J/T66N0fP8R+DNgPPB64DHg7LTdVSmuc9P8QcAdwMp0bMcDZw48DsAJ\nwJPAEWn+GODX0vTHgRUD4v6f6di8BXgROCEt/3R67pPSsXoAeLLsv+cq/ZQegH86PHD7J4WNhWWH\npD+Mw4fY9g3Al4DN6U3n6811gW8BH2jxmP+uML8EuD5N3wh8urDs1emPfwZwEXDvgH3dA1ySpod7\ng3oEuDBNvw+4v7DsE8DtwLEdvo75G89Qbel5X1iYvwX4H4X59wO3pemPAMsH7G81cHEHx+JSBiR3\nsjf+PwSmpje7gwrLLgT+rp1zIr3m81u8Ls0312cG/JxQWOfDwE+AXc3XHzgdeGLAvhYDX0zTVwGN\nwrIjyboCJ7U6NsBxZMn4LOCVA9a7iv2TwlEDXrPz0/RjwG8Xls0fePzr/uPuo7Fje3MiIl5Ik4cO\ntmJEbIiIyyJiOvBmsqvfz6fFR5P94Qz7OMAvyN78IfvjfqLwGP9M9mYxLS17csB+nkiP247l9Hch\nXZTmmz4LPArcJekxSR9pc58v147C9C8GzL9I/2s9A3hP6jp6RtIzwBlkd1f7GeZYAGwdsEnzdTsG\neCXws8Lj/BXZHUPTcOdEO3WF10bEawo/PyksW57iuDMimufMDOCoAc9/MXB4YbsthenpwNMR8Wyr\nICLiUeCDZAlgh6SVxe7JQRTP0xfof95HkSXgwWIxXFOovfRHvozsDQmyP5jjOtjVNrKrNAAkvRp4\nLdkf3TayN4uiGez/hjeULwNnpTrE6cBXmgsi4vmIuDIijgXOBT5c7Hc/gIaqWzxJdtVafCOdGBGf\nGW6HgxwLyJJqUfN120xWkC6+aU+KiBPbjL8bo8iuIyuUz5F0RmrbDDw+4PkfFhHnFB63+NibgSmS\nJg0bcMTKiDiT7DUIsjvVl+tnZImoafpQK9aVk0LNSDpB0oclTUvz08m6Hf5vWuVvgCslnaLMcZKO\nabXL9HslcJmkk5QVn/+SrMvoSeCbwPGSLlQ2nPQCsm6Tbwyyn/1ExCbg79Nj3BUROwvP53dSjAKe\nI+uK+FWbL8eB8GXgdyWdnQqwB6WC6cA393aOBcDhkhZKeqWy4aBvILsy3w7cBXxO0kRJr5B0rKTf\nbDPOHWT1ouEMelwkXQS8FbgEWAgsSxcCa4GfpwLuwek1eLP6h9nus7+I+BnZ+XGdpMnpee73HCQd\nL+ld6dz6JdndWSfHeRWwOD3WNLKuP///gAInhbFhsOGpQ53oPye72r5P0vNkb0APAH8MEBG3AH8B\n3ET2Jvs1sqJyy8eNiLuB/wLcSnZn8HqygjIRsQs4Jz3GPwFXAudExNNtxNu0jOyqbvmA9lnAmvS8\n7iHr6/8ugKQ7JS0aZr9DPfZw8cSA6ebrsAU4D/gosJPszuGPGfxvreWxSO4je45PAZ8Efi8inknL\nLiYr6q8nK/p+lf5uquHOiWuA30+jcD7P0HZr388pfDAlr6vJ6iQvRMRK4B+Az0XEr8iO9cnAT1Pc\nNwDNob6DxXURWT1lA1myWjhIzBPIBhU8RXa1/zqybqnB9tnq2P052d3r42RJ9atktS9LlIotgy+U\nvgj8DrCzeVsqaQpwM9kt3CayAs7utGwx8F6yDL4wIu5K7aeSjbA4iOwq54rUPoHsj/wUsv7nCyLi\nibTsErJRDQD/NSIGvhmYjWmSLiUrBp9ZdixjlaTLyd7DfqvsWKpiuDuFL5ENlStaBKyJiOPJhuIt\nApA0G7gAmJ22uS7d0kM2bG5+RMwCZql/DP18YFdqv5rUR5gSz8eA09LPx1UYB25m1glJR0g6I3W3\nnUA2guq2suOqkpZJISK+TzYMrehcslt50u+5afo8YGVE7El9wI8Cp6cRAhMjYm1ab3lhm+K+biUb\nbgbwr8n6jnenu5A17J+czMa6wbpabGReRTZK6zmyi9rbyQrmlozvYJupEdEcjreDbLw0ZEO97i2s\nt4Vs5MQe9h32tZX+ERXTSMPDImKvsk+Hvjbta8sg+zKrjYhYRv9Fk3VBGvjQ7gitWhpRoTmygoSv\nZMzMxohO7hR2SDoiIranrqHm8MCt7Dvm92iyK/ytaXpge3ObY4BtksaTfapxl6StZJ9mbJoO/N1g\nwUhyUjIze5kiYtDhxp0khf9FNjZ5Sfp9e6H9JkmfI+vqmQWsjYhIX2B1OtkY5ovIvhenuK97gd8n\n6+ODbKjYX6bisoDfJvv6gJf15OzlkXRVRFxVdhxmg/H52T2tLqZbJgVJK4F3Aq9L3yT4MbIvlFql\n7LvYN5F9SRcRsV7SKrIx03uBBdE/3nUB2ZDUg8mGpDa/8vhGYIWkjWRDUpvj2p+W9EngB2m9TzSH\nvdoBNbPsAMxamFl2AHXQ8nMKvUBS+E6hOyQtjYhLy47DbDA+P7un1fumP9FsRUvLDsCshaVlB1AH\nvlMwM6sZ3ylYWyT1lR2D2VB8fo4OJwUzM8u5+8jMrGbcfWRmZm1xUrCc+2ytynx+jg4nBTMzy7mm\nYGZWM64pmJlZW5wULOc+W6syn5+jw0nBzMxyrimYmdWMawpmZtaWTv7Jjo1RkvoiolF2HDa6/N8L\nu6+Xey+cFMyM3vhX6w32/S+9VdWz+QBwTcGs9rI7hd5+H6gWVf5OwTUFMzNri5OC5TwO3KqtUXYA\nteCkYGZmOdcUzGrONYVuc03BzMzGCCcFy7mmYNXWKDuAWnBSMDOznGsKZjXnmkK3uaZgZmZjhJOC\n5VxTsGprlB1ALTgpmJlZzjUFs5pzTaHbXFMwM7MxwknBcq4pWLU1yg6gFpwUzMws55qCWc25ptBt\nrimYmdkY4aRgOdcUrNoaZQdQC04KZmaW6zgpSFos6SFJD0q6SdIESVMkrZH0iKS7JE0esP5GSRsk\nnV1oPzXtY6OkawrtEyTdnNrvlTSj86dp7YiIRtkxmA2tr+wAaqGjpCBpJvA+4JSIOBEYB8wDFgFr\nIuJ44O40j6TZwAXAbGAOcJ2kZpHjemB+RMwCZkmak9rnA7tS+9XAkk5iNTOz9nV6p/AcsAc4RNJ4\n4BBgG3AusCytswyYm6bPA1ZGxJ6I2AQ8Cpwu6UhgYkSsTestL2xT3NetwFkdxmptck3Bqq1RdgC1\n0FFSiIingf8GPEmWDHZHxBpgakTsSKvtAKam6aOALYVdbAGmDdK+NbWTfm9Oj7cXeFbSlE7iNTOz\n9nTafXQs8EFgJtkb+6GS/rC4TmQfgPDg5x7imoJVW1/ZAdTC+A63+3XgnojYBSDpa8BvANslHRER\n21PX0M60/lZgemH7o8nuELam6YHtzW2OAbalLqpJ6Q5lP5KWApvS7G5gXfMNrtkl4nnPe37o+X6N\n9LvP8yOaz1Ts+PaRXci31NEnmiWdBHwF+JfAi8BSYC0wg6w4vETSImByRCxKheabgNPIuoW+DRwX\nESHpPmBh2v4O4NqIWC1pAXBiRFwuaR4wNyLmDRKLP9HcJZL6fLdQP73zieYGvXG30NufaO7oTiEi\nfiRpOfAPwEvAD4EbgInAKknzya7cz0/rr5e0ClgP7AUWRH82WkCWVA4G7oyI1an9RmCFpI3ALrLR\nTWZmdgD5u4/Maq537hR6RW/fKfgTzWZmlnNSsJw/p2DV1ig7gFpwUjAzs5xrCmY155pCt7mmYGZm\nY4STguVcU7Bqa5QdQC04KZiZWc41BbOac02h21xTMDOzMcJJwXKuKVi1NcoOoBacFMzMLOeaglnN\nuabQba4pmJnZGOGkYDnXFKzaGmUHUAtOCmZmlnNNwazmXFPoNtcUzMxsjHBSsJxrClZtjbIDqAUn\nBTMzy7mmYFZzril0m2sKZmY2RjgpWM41Bau2RtkB1IKTgpmZ5VxTMKs51xS6zTUFMzMbI5wULOea\nglVbo+wAasFJwczMcq4pmNWcawrd5pqCmZmNEU4KlnNNwaqtUXYAteCkYGZmOdcUzGrONYVuc03B\nzMzGCCcFy7mmYNXWKDuAWnBSMDOzXMdJQdJkSbdIeljSekmnS5oiaY2kRyTdJWlyYf3FkjZK2iDp\n7EL7qZIeTMuuKbRPkHRzar9X0ozOn6a1IyIaZcdgNrS+sgOohZHcKVwD3BkRbwTeAmwAFgFrIuJ4\n4O40j6TZwAXAbGAOcJ2kZpHjemB+RMwCZkmak9rnA7tS+9XAkhHEamZmbegoKUiaBJwZEV8EiIi9\nEfEscC6wLK22DJibps8DVkbEnojYBDwKnC7pSGBiRKxN6y0vbFPc163AWZ3Eau1zTcGqrVF2ALXQ\n6Z3C64GnJH1J0g8l/bWkVwNTI2JHWmcHMDVNHwVsKWy/BZg2SPvW1E76vRmypAM8K2lKh/GamVkb\nOk0K44FTgOsi4hTgn0ldRU2RfQDCg597iGsKVm19ZQdQC+M73G4LsCUifpDmbwEWA9slHRER21PX\n0M60fCswvbD90WkfW9P0wPbmNscA2ySNByZFxNODBSNpKbApze4G1jXf4JpdIp73vOeHnu/XSL/7\nPD+i+UzFjm8fMJNhdPyJZknfA/59RDwi6SrgkLRoV0QskbQImBwRi1Kh+SbgNLJuoW8Dx0VESLoP\nWAisBe4Aro2I1ZIWACdGxOWS5gFzI2LeIHH4E81dIqnPdwv10zufaG7QG3cLvf2J5k7vFAA+AHxF\n0quAx4DLgHHAKknzya7czweIiPWSVgHrgb3AgujPRguApcDBZKOZVqf2G4EVkjYCu4D9EoKZmXWX\nv/vIrOZ6506hV/T2nYI/0WxmZjknBcv5cwpWbY2yA6gFJwUzM8u5pmBWc64pdJtrCmZmNkY4KVjO\nNQWrtkbZAdSCk4KZmeVcUzCrOdcUus01BTMzGyOcFCznmoJVW6PsAGrBScHMzHKuKZjVnGsK3eaa\ngpmZjRFOCpZzTcGqrVF2ALXgpGBmZjnXFMxqzjWFbnNNwczMxggnBcu5pmDV1ig7gFpwUjAzs5xr\nCmY155pCt7mmYGZmY4STguVcU7Bqa5QdQC04KZiZWc41BbOac02h21xTMDOzMcJJwXKuKVi1NcoO\noBacFMzMLOeaglnNuabQba4pmJnZGOGkYDnXFKzaGmUHUAtOCmZmlnNNwazmXFPoNtcUzMxsjHBS\nsJxrClZtjbIDqAUnBTMzy7mmYFZzril0W41rCpLGSbpf0v9O81MkrZH0iKS7JE0urLtY0kZJGySd\nXWg/VdKDadk1hfYJkm5O7fdKmjGSWM3MbHgj7T66AlhP/2XGImBNRBwP3J3mkTQbuACYDcwBrpPU\nzFLXA/MjYhYwS9Kc1D4f2JXarwaWjDBWG4ZrClZtjbIDqIWOk4Kko4F3A38DNN/gzwWWpellwNw0\nfR6wMiL2RMQm4FHgdElHAhMjYm1ab3lhm+K+bgXO6jRWMzNrz0juFK4G/gR4qdA2NSJ2pOkdwNQ0\nfRSwpbDeFmDaIO1bUzvp92aAiNgLPCtpygjitWFERKPsGMyG1ld2ALXQUVKQdA6wMyLup/8uYR+R\nVbBdvTIz6yHjO9zu7cC5kt4NHAQcJmkFsEPSERGxPXUN7UzrbwWmF7Y/muwOYWuaHtje3OYYYJuk\n8cCkiHh6sGAkLQU2pdndwLrmVW+zn9zzw88XawpViMfzozffr5F+91VwvjldlXhazWcqdnz7gJkM\nY8RDUiW9E7gyIn5X0mfIisNLJC0CJkfEolRovgk4jaxb6NvAcRERku4DFgJrgTuAayNitaQFwIkR\ncbmkecDciJg3yON7SGqXSOpzF1L99M6Q1Aa90YXU20NSO71TGKh5Rn0aWCVpPtmV+/kAEbFe0iqy\nkUp7gQXRn40WAEuBg4E7I2J1ar8RWCFpI7AL2C8hWHc5IVi19ZUdQC34w2tmNdc7dwq9orfvFPw1\nF5bz5xSs2hplB1ALTgpmZpZz95FZzbn7qNvcfWRmZmOEk4LlXFOwamuUHUAtOCmYmVnONQWzmnNN\nodtcUzAzszHCScFyrilYtTXKDqAWnBTMzCznmoJZzbmm0G2uKZiZ2RjhpGA51xSs2hplB1ALTgpm\nZpZzTcGs5lxT6DbXFMzMbIxwUrCcawpWbY2yA6gFJwUzM8u5pmBWc64pdJtrCmZmNkaMLzuAOsiu\nxKybqn4lZgdCA+grOYaxz0lh1PRCXmjQG390zgdmB4prCqPAfbbdVv0+217i87Pbqn9+uqZgZmZt\ncVKwgkbZAZi10Cg7gFpwUjAzs5xrCqPAfbbdVv0+217i87Pbqn9+uqZgZmZtcVKwgkbZAZi10Cg7\ngFpwUjAzs5xrCqPAfbbdVv0+217i87Pbqn9+uqZgZmZtcVKwgkbZAZi10Cg7gFpwUjAzs5xrCqPA\nfbbdVv0+217i87Pbqn9+uqZgZmZt6SgpSJou6TuSHpL0Y0kLU/sUSWskPSLpLkmTC9sslrRR0gZJ\nZxfaT5X0YFp2TaF9gqSbU/u9kmaM5IlaOxplB2DWQqPsAGqh0zuFPcCHIuJNwNuA/yTpjcAiYE1E\nHA/cneaRNBu4AJgNzAGuk9S8dbkemB8Rs4BZkuak9vnArtR+NbCkw1jNzKxNHSWFiNgeEevS9PPA\nw8A04FxgWVptGTA3TZ8HrIyIPRGxCXgUOF3SkcDEiFib1lte2Ka4r1uBszqJ1V6OvrIDMGuhr+wA\namHENQVJM4G3AvcBUyNiR1q0A5iapo8CthQ220KWRAa2b03tpN+bASJiL/CspCkjjdfMzIY2oqQg\n6VCyq/grIuLnxWWRDWvykIae0ig7ALMWGmUHUAsd/49mSa8kSwgrIuL21LxD0hERsT11De1M7VuB\n6YXNjya7Q9iapge2N7c5BtgmaTwwKSKeHiKWpcCmNLsbWBcRjbSsD6Ds+X6N9LvP8yOaz1Tl+Pb6\nfL9G+t3n+RHNZyp2fPuAmQyjo88ppCLxMrJC8IcK7Z9JbUskLQImR8SiVGi+CTiNrFvo28BxERGS\n7gMWAmuBO4BrI2K1pAXAiRFxuaR5wNyImDdILP6cQu1Ufxx4L/H52W3VPz9bvW92mhTeAXwPeID+\ns2kx2Rv7KrIr/E3A+RGxO23zUeC9wF6y7qZvpfZTgaXAwcCdEdEc3joBWEFWr9gFzEtF6rafXFX4\nj67bqv9H10t8fnZb9c/PrieFKnFS6KYGvTHCo/p/dL3E52e3Vf/89CeazcysLb5TGAW9cyXWK6p/\nJdZLfH52W/XPT98pmJlZW5wUrKBRdgBmLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64p\nmJlZW5wUrKBRdgBmLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZW5wUrKBRdgBm\nLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZW5wUrKBRdgBmLTTKDqAWnBTMzCzn\nmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZW5wUrKBRdgBmLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX\n+Pzstuqfn64pmJlZW5wUrKBRdgBmLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZ\nW5wUrKBRdgBmLTTKDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZW5wUrKBRdgBmLTTK\nDqAWnBTMzCznmsIocJ9tt1W/z7aX+Pzstuqfn64pmJlZWyqfFCTNkbRB0kZJHyk7nrGtUXYAZi00\nyg6gFiqdFCSNA74AzAFmAxdKemO5UY1l68oOwKwFn5+jodJJATgNeDQiNkXEHuBvgfNKjmkM2112\nAGYt+PwcDVVPCtOAzYX5LanNzMwOgKonBQ+JGFWbyg7ArIVNZQdQC+PLDmAYW4HphfnpZHcL+8iG\n1FVdpUeoFSwrO4C29MYx7yU+P7upl8/PSn9OQdJ44CfAWcA2YC1wYUQ8XGpgZmZjVKXvFCJir6T3\nA98CxgE3OiGYmR04lb5TMDOz0VX1QrOZ1ZCkN0o6S9KhA9rnlBVTXTgp2D4kXVZ2DFZvkhYCtwMf\nAB6SNLew+FPlRFUf7j6yfUjaHBHTh1/T7MCQ9GPgbRHxvKSZwC3AlyPi85Luj4i3lhrgGFfpQrMd\nGJIebLH48FELxGxwiojnASJik6Q+4FZJM+idsbM9y0mhng4n+z6pZwZZds8ox2I20E5JJ0fEOoB0\nx3AOcCPwlnJDG/ucFOrpDuDQiLh/4AJJ3y0hHrOii4E9xYaI2CPpEuCGckKqD9cUzMws59FHZmaW\nc1IwM7Ock4KZmeWcFMzMLOekYLUn6fkDvP+Zw3w25OXsa6mk3+vGvswG46Rg1lv/zCnorXitxzgp\nmCWS+iQ1JH1V0sOSvjzM+p+W9JCkH0n6bGqbKuk2SevSz9vS6uMk3SDpx5K+JemgtP7Jku5N+/ia\npMmt2psPfSCevxk4KZgNdDJwBTAb+DVJZwy2kqTXAnMj4k0RcRLwybToWuA7EXEycAqwPrXPAr4Q\nEW8m+w/0zS6g5cCfpH08CHx8mHazA8pJwWxfayNiW2Sf6lwHzBxivd3Ai5JulPRvgV+k9t8CrgeI\niJci4rnU/nhEPJCm/xGYKekwYFJEfD+1LwN+c6j2Lj0/s5acFMz29cvC9K8Y4qtgIuJXwGlk3+B5\nDrC6sHiw7p2B+x03yDpDdQu5u8hGjZOCWQckvRqYHBHfBD4MnJQW3Q1cntYZl676B91Fuot4RtI7\nUttFQGOo9gPwNMz24y/EM9t3NM/AkT1DjfSZCHw9FYwFfCi1XwHcIGk+2R3BHwE7Wuz3EuCvJB0C\nPAZcNkx7q5jMRsxfiGdmZjl3H5mZWc7dR2bDkPQ14PUDmv80ItaUEY/ZgeTuIzMzy7n7yMzMck4K\nZmaWc1IwM7Ock4KZmeWcFMzMLPf/AdIXR5k3/mALAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "new_result.plot(kind='bar', title='In School Vs. Time Spent Exercising')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "People who are not in school spend more time exercising."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Correlations:
\n",
+ "Taking classes and age --> -0.216473
\n",
+ "Relaxing & thinking and age --> 0.111234
"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "monthly_data = avg_hours_tv_per_month()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEZCAYAAABoy7XpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcHFW9///Xm1UQWQQEZDEKsi8J3h+ifgXCJsgi7qCA\noCIgl01ZBEQjCgSJEhdE9iAoekW4sgoYEwSu4EYiEBZBQRZBtiCriLx/f5wz0Exmprtnqru6qz7P\nxyOPTHVVV33OdPdnqj916hzZJoQQQjXMV3YAIYQQihNJPYQQKiSSegghVEgk9RBCqJBI6iGEUCGR\n1EMIoUIiqYfak7SGpFmS/inpv8uOp19I2kzSfWXHEV4tknqfknSPpH9JWnrQ4zdJeknSKl2OZ8gP\nuKSZkj7VzVhG4TBguu3FbX+3cYWkWyU9lf+9KOm5huUjJD0t6bWDd5hfh892I3hJ4/Jr/sdBjy8j\n6QVJfy3oOC9JeksR+wqdE0m9fxn4C7DLwAOS1gMWyet6helAPJLmL3B3bwLmDLXC9jq2X2f7dcC1\nwH4Dy7aPB+4HPjQotnWBtYDzC4yxFYtIWqdh+WOk90iRv38VuK/QAZHU+9t5wO4Ny58AfkDDB0/S\nwpKmSLpX0kOSTpH0mrxuSUmXSvqHpMclXSJpxYbnzpR0jKTrcmniysHfDNolaS9Jf5b0mKSfS1oh\nPz5wtjlfw7Yvn+VL2kPS9ZK+KelR4MuSVpN0jaS5kh6R9OMRjrtjPut+QtIMSWvmx38FbAZ8N7dx\ntWZNGLR8Dq9+DcjLl9l+Yog4bpO0XcPyAjn28ZJeI+k8SY/mOH8r6Q1N4ml0Luk9MGA35n0/rJV/\nr09IukXSDg3rpkk6Ob8n/inphoEzc0m/zpvNzt9SPtzwvM9JeljSg5L2aCPe0AGR1PvbDcDiktbM\nZ64fJSX6RpOB1YAN8v8rAl/K6+YDzgRWyf+eA7476Pm7AHsAbwAWAg4ZbbCSNgeOAz4MrADcCwyb\niJn3LH8j4O4cy3HAV4Ff2F6S1K5vD3Pc1YEfAQcAywCXA5dIWsD25rxyBr647buaNGPwWe95wCaS\nVsrHmo/0OztnmOf/iIZvV8B7gH/YnkVKyIsDKwGvB/YmvSat+iGws5K1gcWAGwdWSloQuAT4BbAs\nsD/ww/z7GfBRYBKwFHAXcCyA7U3y+vXzt5Sf5uXlc8xvBD4FnCxpiTZiDgWLpN7/ziWdGW5FKiE8\nMLBCkoC9gM/Znmv7aeB4YGcA24/bvsj283ndccCmDfs2cLbtu2w/D/wPMH6EWN6YzwBf/gf8v4b1\nHwfOtD3L9gvAEcA72qj/P2j7ZNsv5XheAMZJWtH2C7b/b5jnfRS41PZ02/8BppDKVO9s2GZUZQXb\n9wEzSWfFAFsACwOXDfOUHwE7DnxbIpVIBso0LwBLA291cpPtp9oI537gDtJ7YXfSWXqjjYHX2p5s\n+0XbM4BLefUfmQtt/z7/nn7IyK83wL+BY2z/x/YVwNPAGm3EHAoWSb2/mZTUP84QpRfS2diiwB8a\nkuwVpLNVJC0q6VSli65PAtcAS+Q/BgMeavj5OdLZ33AetL1U4z/guob1A2fnKXj7GeAx0ll2KwZf\niD2M1N7f5lLCnsM8bwXgbw3Hdd5X43HHUnc+h1eS+m7A+TkpzsP23cBtpMS+KLADKdFDei2vBH4s\n6QFJJ0haoI04THoP7En6w30ur34/vJF5f4f35scHnv9ww7pmrzfAY7Zfalh+toXnhA6KpN7nbP+N\ndDFsW+DCQasfJX0w125ItEvaXjyv/zywOrCR7SVIZ+micxfDHgTGDSwo9RpZmvTt4pn88KIN2y8/\n6PmvSry2H7b9GdsrkkoV3xumd8aDpIuhA8cVsDIN32rG6CJgJUkTgfczfOllwPmks+P3Abfa/gtA\nPns+xvY6pG8R2zNvvb6ZC4H3Anfbvn/QugeBlQf90X4Txf0eQg+IpF4NnwI2t/2q+ms+gzodmCpp\nWQBJK0raOm+yGCnpPynp9cCXh9h3kQn+fGBPSRtIWphU7rnB9t9sP0JKLrtJml/SJ4FVR9qZpA8P\n1LKBuaSk/9IQm/4PsJ2kzXNd+fPA80BjuabVds6zXf7GcQFwNnCP7T/O86xX+zGplr4Pr5ylD3QL\nXS9fH3mKVNoY8ox/ODmWicCnh1h9I+lM+jBJC0rajPSHY+C6RrPfwcM0eU1C+SKpV4DtvwxKJI1n\ntIeTLnjdkEssV5POzgGmkmrLj5IS3BXMW4bwoJ9HKlOMWMKwPR04GvgZ6azxzeT6frYXcGiOZ23g\n+ibH/q/crqeAnwMH2L5niOPeCewKfAd4BNgO2MH2i63G3sJ255AuNg+uY8+7A/sh0u/7HcBPGlYt\nD/wUeJJ0fWQmqYSCUq+lU1qJy/Yfbf918Lp8HWMH0re6R0gXxXfLv5+B7UZ6/ScB5+RS3oeG2T6U\nTCNNkpEv5lxDuvCzEPBz20cM2uZ9wDGkM6SXgENt/6pjEYcQQhjWiEkd0sU028/mCzbXAYfYvq5h\n/WvzV76Bm18ust2sr28IIYQOaFp+sf1s/nEhYH7g8UHrn2lYXIz01TmEEEIJmiZ1SfNJmkW6SDLD\n9jy3U0vaSdJtpJrsAcWHGUIIoRVNyy8vb5juErsS+ILtmcNs827gDNtx80EIIZSg5RsbbD8p6TJS\nj4OZw2xzbR7LYmnbjzWukxRXyUMIYRRst9y1eMSkLmkZ4EXbcyUtQrr9+CuDtlkV+IttS9owB/DY\nvHtrL7CiSJpke1K3j1umaHM9RJvrod0T4mZn6iuQ+qXOR6q/n2t7uqS9AWyfCnwQ2F3Sv0njPuw8\n7N7KMa7sAEowruwASjCu7ABKMK7sAEowruwAet2ISd32zcCGQzx+asPPXwe+XnxoIYQQ2lWHO0qn\nlR1ACaaVHUAJppUdQAmmlR1ACaaVHUCva7n3y5gPJLmMmnoIIfSzdnNn5c/U86BFtRJtrodocxhK\n5ZN6CCHUSZRfQgihh0X5JYQQaqzySb2ONbhocz1Em8NQKp/UQwihTqKmHkIIPSxq6iGEUGOVT+p1\nrMFFm+sh2hyGUvmkHkIIdRI19RBC6GFRUw8hhBqrfFKvYw0u2lwP0eYwlMon9RBCqJOoqYcQQg+L\nmnoIIdRY5ZN6HWtw0eZ6iDaHoVQ+qYcQQp1ETT2EEHpY1NRDCKHGKp/U61iDizbXQ7Q5DKVpUpf0\nGkk3SpolaY6k44fY5uOSZkv6k6TrJa3fmXBDCCGMpKWauqRFbT8raQHgOuAQ29c1rH8HMMf2k5K2\nASbZ3njQPqKmHkIIbWo3dy7Qyka2n80/LgTMDzw+aP1vGhZvBFZqNYAQQgjFaammLmk+SbOAh4EZ\ntueMsPmngMuLCG6sJBaUtv942XF0Wx3rjtHmeqhjm9vV6pn6S8B4SUsAV0razPbMwdtJmgh8EnjX\nUPuRNA24Jy/OBWYN7GfgxSp2+ZTd4KCPSFwBqc7f2ePFclnLpPdnz8TTpeXxQC/F0/HlAb0STyeW\n88975KbeQ5va7qcu6WjgOdtTBj2+PnAhsI3tu4Z4Xldr6hLLAbcCNwC32RzarWOHEEJRCu+nLmkZ\nSUvmnxcBtgJuGrTNKqSEvutQCb0kXwZ+AOwFfFJiXLnhhBBC57VSU18B+FWuqd8IXGJ7uqS9Je2d\nt/kSsBRwiqSbJP22Q/G2RGJN4MPA10BrAN8FvlpmTN1Ux7pjtLke6tjmdjWtqdu+GdhwiMdPbfj5\n08Cniw1tTE4ATrB5XOlLyxTgTokJ9qu/ZYQQQpVUbuwXiU2BacBaNs83PL4v8EFgK5vuNDqEEMao\n8Jp6P5GYj3RWfmRjQs/OAFYGtu56YCGE0CWVSurAR/P/Pxl44JWuQvwbOBz4usT83Q+te+pYd4w2\n10Md29yuyiR1idcAxwGH2Lw0zGY/B54CdutaYCGE0EWVqalLHAK82+Z9TbZ7B/A/wOo2z3UqnhBC\nNUisRbpGd2E5x28vd1YiqUu8HriDlNRvb2H7C4Df20zuRDwhhGrI3aN/BSwCrGdzf/djqOeF0i8C\nFwyV0IepwR0JHCKxTKcDK0Md647R5nroZpsl3gr8EjgCOBn4WreOPRYtjf3SyyTeAuwOrNPqc2zu\nlPgx6Y/BQZ2KLYTQnyTeDEwHJtmcI/E6+uRel74vv0j8BLjZbu+vqMQbgDnA223uLjquEEJ/klgF\nuAY40eZ7DY/vQ7pTfctu3utSq/KLxNtJI0J+s93n2vwDmAocW3RcIYT+JLEiqYb+rcaEnp0BvBHY\ntuuBtaFvk7qESDcaHW3z7PDbjViDOwl4t8RGBYdXqqi11kO0ueh9szwpoZ9mM3XwepsXgUOBE6Xe\nLV33bVIHdgKWII3EOCo2z5BGc/x6/iMRQqghiWVJNfTzbL4+wqaXkSYL+mRXAhuFvqypSyxIGit9\nf5srx7ivBYDZwOE2lxYRXwihf0gsTTpDv9jm6Ba23xC4FFjD5qnOx1ePmvpngL+ONaHDy1+pDgdO\n6OWvVCGE4kksCVwFXEkaQrwpmz+Sujr25MQ7fZfUJZYAjqbFX2iLNbjLgEd4ZQqpvha11nqINo91\nXyxOSubXkr6pt1O2+CKwX76w2lP6LqmTzqqvsPlTUTvML+ZhwFckXlvUfkMIvUliMeAK4A/Awe12\nUbT5G3AqPTj5Tl/V1CVWBmYBG3Tidt18Q9It7fZ5DyH0D4lFgcuBPwN7jzAAYLP9LA7cCbzHZnaB\nIQ46ToXHfpE4B7jP5osFhTV4/6uSpuxbO/djDyFUSB7N9RLgQWDP0Sb0hv19Fng/sHWnbkiq7IVS\nifGkCS5G6m40xPNar8HlO0vPo8ULJr0qaq31UEabJZaTOENi9W4fOx1/9G2WWBi4EHgU+ORYE3p2\nOmnynW0K2Fch+iKpN9xodIzNPzt8uK8BHy3rTRtCj9sMmAhcL/FNiaVKjqclEguRhtx+Ftjd5j9F\n7DdPvnMYMKVXes/1RVIn/RVciXSbbltsz2xvex4l/QE5rt1j9Yp221wF0eaumQCcTRpAb1HgdonP\ndiuhjabNObYfAQI+lhNxkS4h9Z7bs+D9jkrPJ/U89dzXSV2Oin4xhvNtYKM8oUYI4RUbAjfZ/MNm\nH2Ar4EPALImtyg1tXjl/nAu8FviwzQtFHyPX0g8h9Z5brOj9t6vnkzqp7/jjwMWjefJoanB5RqSj\nSWM89N3wAVFfrodutzl/FjYE/jjwWO5avAVwFHCKxCUSa3QuhtbbnCeiPwtYBviAzb86FZfN70l3\npZZ+Q9KISV3SayTdKGmWpDmSjh9imzUl/UbS85I+X2Rwuc/4MaR5R7s21GV2HvA6GHl6vBBqZGXg\n3zZ/b3zQxjY/J5VkZgLXlV1vzwn9VOBNwPu6NHXlUcB/l31DUtMujZIWtf2spAWA64BDbF/XsH5Z\n0i9uJ+AJ298YZj9td2mU+BJpbsBd2nleUSTeQyrFrNvF0k8IPUnifcBnbLZrst0bSCdj7we+Qhr1\n8MUuhDhwfJFmKlof2Mbm6S4e+3jgDTafKm6fBXdptD0wrO1CwPykUkjj+kds/x6KTXp5GMwDSVPP\nleUq4G/Ap0uMIYResSE0n/VnUL39g8Bsia07HRy8nNBPAt4GvLebCT2bDGwnsX6Xj/uypkld0nyS\nZpGGm5xhe07nwwLSX/izbf46lp2Mpe7YMHzAl/J0Vn0h6sv1UEKbX1VPbybX27cknZidXES9faQ2\n54Q+GXg36Qy9092f52HzJGnogBO7fewBrZypv2R7PKlL4SZj6/yvaZIm5X8HNe5L0mYDyxJrw9Uf\ngXVmDrW+m8t5PsJfwmnfKeP4sdzaMjC+l+LpxjIwvrvHu2pjclJv4/OT6+3LfBa+cx+p3n6StM72\nxcd32jRS9+etQRuU+PqcBr9YSzrk0NE8P/88Lf+bRJvaGiZA0tHAc7anDLHuy8DTRdTUJS4BZtjt\nT1PXCRJvIr2Z1x18kSiEOpBYDrgNWHosnRZyvf0rwAdIdfdTi6i3SxwN7AxM7IUhPvL1h68B48d6\no1M7uROa935ZRtKS+edFSDWy4WpqRU2AMZF0Ff3kIvZXBJt7SV2jJpUcSghlmUDqnz6mXmi53r4v\nqSzzfgqot0scBuwKbNELCT27mHT9cY9uH7hZ+WUF4FdKNfUbgUtsT5e0t6S9ASQtL+k+4GDgi5L+\nJmlUHfBzN6QpwBFF9Skd9BV9LI4DPiCxVkH765gC29w3os0d11Y9vRmbm0kniUeQ6u2XtlJvH9xm\niYNIk+ZsbvNQUfGNVcMNScd0+4akEZO67Zttb2h7vO31bZ+YHz/V9qn554dsr2x7CdtL2V7F9miv\nOO8CvEgao6Gn2DxBuggzuexYQihBoUkdXu7ffjHpm/kMUr19qsTrW3l+HiHxQFJCf6DI2Ipg8ztS\nv/1C799ppmeG3s1DYt4O7GZzbVeCalNDjLvb/LrseELoFom7ge1sbu/gMZYl1dmb1tslPk0aTXXT\nsfaQ6ySJcaSJOEZ9Pa7QmnqXHUCq2fVkQgeweZ5011hfDh8QwmjkO0PfQJpUomNsHhmi3v6eIeL5\nBOn61ha9nNABbO4hDUR4TLeO2RNJPc/mfSjwheL3XXjd8XxgQdIgRj0p6sv10MU2jwdmFzVcbTMN\n9fYvAN+RuExiTQDpq8cAxwNb2p39I1Og44EdJdbrxsF6IqmTBs/6ic0dZQfSTB5Y/1Dg+DxGcwhV\nV3g9vZlcb78EWBeYDlybppvceD/SLEMdKwMVzWYuqXtjV25IKr2mLrEacANpjJdHuhJMASSuAC63\n+U7ZsYTQSRLnAdNtzi4xhmVJFxzP7+R8oJ2STwBvAfa3ubK95/bZHKUSPyXV0vtqUoo8tsPVwOr5\n1uAQKkliDrBLPybTXiK9PMDZhHZKWX11oTRPQvF2YGrnjtGZumMe1+Jy0tgwPSXqy/XQjTbn4a/H\nAd0a82lEff46/y/wJPCJTh6ktKSee498Azja5tlm2/eoo4F9JFYqO5AQOmQD4NYYenrsGm5I+mr+\nY9kRpZVfJD5ISopv69ZV9U6QOA5Yrsjxk0PoFRL7ARvYfKbsWKpC4nzgNru1bo59UVPPFw1uBfa1\n+WVXAugQiSWAO0ldrG4uO54QiiRxJvA7m++XHUtVSLwZ+D0t3pDULzX1fYC7upHQO12DyxdJj6WH\nhg/o87rjqESbO6br3RlHUoXXOd8wdRbpomnhup7UJZYk3ZXZcxcYx+D7wJoSm5cdSAhFkVgYWAPi\nG2gHHAfsJLFu0TvuevlFYjKwbNVq0BIfIf2h2ijfoBRCX5PYEDjH7s6dkHUjcSDwHpv3jrxdD5df\n8mQTe5EG4qmanwIvkQbqD6EKeqr0UkGnAKtLbFXkTrtdfvkacHI3h8nsVg0ud1c6FDg2f20tTRXq\nju2KNndEzyX1Kr3ONi8AhwNTJOYvar/dTupbUuKErJ1mcw2p/rhf2bGEUIAJ9FhSr6ALgaeB3Yra\nYVdr6uB9bE7tygFLkibNZiawRp5YI4S+I7EA6e7HFWz+WXY8VSaxMXABaciReW7E7OmaOnBml4/X\ndTZzSLcDH1F2LCGMwRrAA5HQO8/mBuB64HNF7K+rSb2IWcPbVVINbhLwqTzoV9dVqe7Yqmhz4Xqu\nng6Vfp2/ABwksfxYd9Qr46lXis2DwL7AVRIblR1PCKMQ9fQuyjckTaOAG5JKH3q3yiS2J9059uF8\nETWEviAxEzjW5uqyY6mLPG3gHcBEm1tfebwPxn6pE4mJwE+APWwuLzueEJqRmA94AljV5tGy46kT\niYOArWy2e+Wx3r5Q2nVl1+BsZgA7AmdLfLgbxyy7zWWINhfqLcDcXkzoNXidvwesIbHlaHcwYlKX\n9BpJN0qaJWmOpOOH2e7bkv4sabakCaMNpqry1e2tgG9J7Fl2PCE0EfX0kuQbkr7AGG5IGjGp234e\nmGh7PLA+MFHS/2vcRtJ7gdVsvxX4DOnW155he2bZMcDLMyVNBCZJHNDZY/VGm7sp2lyoDYGbOrTv\nManJ6/wz4Flg19E8uWn5xfZAZ/iFgPmBxwdtsiNwTt72RmBJScuNJpiqs7kD2ATYX+KoPPtTCL2m\nJ7sz1kUecuTzwNckFm33+U2TuqT5JM0CHgZm2B48V+GKwH0Ny/dD70zv1ms1OJt7SYl9Z2ByJxJ7\nr7W5G6LNRe0T0cNJvS6vs81vgN8AB7f73AWa79wvAeMlLQFcKWmzIb4CDU5MQ3apkTQNuCcvzgVm\nDexr4MUqernh2B3Z/2iWbf4ubXAUHHsCbL94mjJMm/RKfP24THqP9kw8XVoeTxqSosDPi+8CXoL5\nV5deWr3H2vuyXomnE8v55z1g6flh76NoU1tdGiUdDTxne0rDY98HZtr+cV6+HdjU9sODnlvLLo0j\nkVgcuAT4G7BnGXfchtBIYkfSNJPblh1LAIlNQNcU1qVR0jKSlsw/L0LqwTH4AsrFwO55m42BuYMT\nehhaHldjW2Bp4KdlD9kbAj1ceqkjm1+3+5xmNfUVgF/lmvqNwCW2p0vaW9Le6aC+HPiLpLuAU4HP\nthtEJ/V6DS6PyrYT8CJwicRrx7rPXm9zJ0SbC9PTSb2Or3O7Rqyp276Z9CIPfvzUQcv/XXBctWLz\ngsQuwOnAlRLb28wtO65QSxOAg8oOIoxeDBPQQ/Lt2ScB7ybNXfhIySGFGpF4A3AnsFTuVhd6QAwT\n0MfyhNUHAZcB10isWHJIoV4mAH+MhN7fKp/U+60GZ2Obo0nDcP5a4i3t7qPf2lyEaHMherqeDvV8\nndtV+aTer2y+DkwhnbGvXXY8oRYm0KPDA4TWRU29x0nsSpqsezu7t8+iQn+TuAvYwea2smMJr2g3\ndza9ozSUy+Y8iWeAX0i83+b6smMK1SOxJLA86UJp6GOVL79UoQZncxFpxLaLJLZqtn0V2tyuaPOY\njQdm2/ynwH0Wro6vc7sqn9SrwuYq4APADyXeX3Y8oXKinl4RUVPvMxIbkro8HmpzXtnxhGqQOBeY\nYXNW2bGEV4t+6hWXL5ZuARwvsW/Z8YTK6PnujKE1lU/qVazB2cwBNgUOlThs8PoqtrmZaPNY9sOi\nwJuBwXMl9Jw6vs7tit4vfcrmLxLvBq7OQ/geHXcChlFaH7gtz48Z+lzU1PucxLLAlcC1wMF5qIFa\nkdgaXr6YHNok8Vlggs1eZccS5hU19ZrJg35NBN4GnDHaGcj7lcQiwFnAt/KAaKF9UU+vkMp/COpQ\ng7N5EngPaW7Y86Wltiw5pG7aH/gtXLYgpDP2uijwvd03Sb0On+exqnxSrwubZ4AdgAXhe4eUHU83\nSCwFHAocCTdfwCgm6a07iYWANYGby44lFCNq6hUjsRhwB/BBmxvKjqeTJE4gjf39mTwV4L3AFja3\nlhxa35CYAJxrs27ZsYShRU295myeBo4CvilR2T+iEisBnwa+AmDzL+AU4IAy4+pDfVN6Ca2pfFKv\nZw1uoXuBhYGPlh1JB00CTrN5AF5+nb8PfERi6RLj6pqC3tsb0kfDA9Tz89yeyif1evq3gc8Bk3Pv\nkErJ48vvCJzQ+LjNw8BFwN5lxNWnJhBn6pUSNfUKk7gQ+J3N8WXHUiSJi4DrbaYMsW4D4HLgzXEz\nzchy99cngRVzD6rQg6KmHhodBnxeYvmyAymKxDtJffK/O9R6m9mkC8Uf6mZcfWoN4O+R0Kul8km9\njjW4gTbb3EWa6/SrZcZTlHzh9wTgSzbPv3rdq17nqcDBVb5QDIW8t/uqng71/Dy3a8SkLmllSTMk\n3SrpFknz9CyQtJSkiyTNlnSjpHU6F24Yha8BO+ayRL/bDlgKOLfJdpfm7d7Z8Yj6W9TTK2jEmrqk\n5YHlbc+StBjwB2An27c1bHMi8E/bX5W0BnCy7XnuaIyaenkk9iNNsLFlvw76leu/s4EjbC5pYfv9\ngU1sPtzx4PqUxAzg+Bgzp7cVWlO3/ZDtWfnnp4HbgDcO2mwtYEbe5g5gnKRl24o6dNqpwArA9mUH\nMga7AU+QzsJbMQ3YXOJNHYuoj+VxcmK2owpquaYuaRzpTXDjoFWzSWeBSNoIeBNpDJKeUMca3OA2\n27wIfB6Ykm8L7ysSrwGOAQ4f7pvGEG1+CjibNDZMJY3xvf1m4Kk8IFzfqOPnuV0tjaeeSy8XAAfm\nM/ZGk4FvSbqJNH7ETTD05LWSpgH35MW5wCzbM/O6zQCKXm44dkf23y/LoOfgwifh/fuSXq+eiq/J\n8n5wwd/gwwuRc/q87WO8pEHP3+r3cNXJEl8Bva2H2lPU8nhgVM+HL+8K698LHxzy99mrywN6JZ5O\nLOef98hNvYc2Ne2nLmlB0lfeK2xPbbpD6a/AeoOTf9TUyyexLvArYE2bx8uOpxUSSwJ3ApvlGZ/a\nff4FwEx76C6QdSVxHPAvOw2zEHpXoTV1SQLOBOYMl9AlLSFpofzzXsA1Q5zNhx5gcwvwM+BLZcfS\nhsOAS0aT0LOpwIEx1vo8YsyXimr2Rn8XsCswUdJN+d+2kvaWNHAr9trAzZJuJ43pfWAH421bHWtw\nTdr8JeDjEmt0KZxRk1iRdMv/pObbDtvm60mlvu0KC6xHjPa9nfvv910fdajn57ldI9bUbV9H8x4y\nv4HeTxAhsXlE4uvAiaTxU3rZl4Ezbe4b7Q5sLDEVOAiad4WsiYEebA+UGkXoiBj7pYby2OO3AXvZ\nTC87nqFIrEmad3WNsdb/c4+fvwLb2vypiPj6mcQOwH4225QdS2iu0Jp6qKY89vhhpDHXe3VO02OB\nE4u4oJsH9jqZdLYeop5eaZVP6nWswbXY5p+RRujbs7PRtE9iY2Aj4DutP6dpm08D3i/xhjGE1lPG\n8N7u25uO6vh5blflk3oYWr6J53PAMRKvKzueAQ2Ddk2yea6o/do8CvwU2KeoffaxOFOvsKip15zE\nOcD9NkeVHQuAxHuBKcD6+U7YIve9DvBLYFwuQdWOxLLAn0lzu/blOEB1EzX10K6jgH16YYyUXN+f\nDBxZdEIHyBNS/wnYueh995EJwE2R0Kur8km9jjW4dtpscz+pdj25YwG17mPA08DP231iG22eChxU\nhbHWR/k6/q6/AAARrElEQVTe7tt6OtTz89yuyif10JITgXdLvKOsAPKgXV9lhEG7CnIlsAiwSQeP\n0cuinl5xUVMPAEjsDuwLvLOMr+YSBwOb2+zQhWPtA2xjs1Onj9VrJP4MvG8Mwy6ELms3d0ZSDwDk\nsVF+C3zD5vwuH3sJ0qBdW+TxaTp9vNcC9wJvt7m708frFfn3/ACwhD30SKqh98SF0kHqWIMbTZtt\nXgIOBiZLLFJ4UCM7FLh8LAm9zesIzwBn0OdjrY/idd4AuLmfE3odP8/tqnxSD62zuRb4HSm5d4XE\nCqSyz5e7dczsZGB3icW7fNwyRT29BqL8El5FYlXS7Fbr2jzUheOdAjxjc0injzXEsc8HfmtzUreP\nXQaJHwDX2JxZdiyhdVFTD2MmcSLp5pRPd/g4qwP/Rxq067FOHmuY478d+DGwWj+XJFolcQuwux1n\n6/0kauqD1LEGV0CbvwZsLzG+gHBGcizpwuyYE/ooryPcCDxE7w9BPKR22iyxKPAW4NaOBdQFdfw8\nt6vyST20z+ZJ4CvANzp1k47ERsA7gW91Yv9tOIl6jN64HnB7XYdHqJMov4QhSSwAzAaOsLm44H2L\nNFfq+TanFbnvUcSyAPAXYKcqlyUk9gXe1umSWihelF9CIfLYK58HpuRJJor0HtLsO2cVvN+25XZ+\nl+qfrffl9HWhfZVP6nWswRXVZptfAHcDny1if/DyTU6TSd8AChu0a4xtPh3YIXev7BtttnkCFejO\nWMfPc7sqn9TDmH0eOFLi9QXtbxfgeeCigvY3ZjZPAD+iwD9evSR/01obYiq/OoiaemhK4mTgRZsD\nx7ifhYHbgT1srikkuIJIrEGaE/VNRU7O0QtyL6Yf2qxTdiyhfVFTD50wCfhYTnxjsTcwp9cSOoDN\nHaS7aT9WdiwdEPX0Gql8Uq9jDa7oNts8Qppibspo95Fvxz8KOKKouF69/0LafBJ9NNZ6G22uRD0d\n6vl5bteISV3SypJmSLpV0i2SDhhim2Uk/ULSrLzNHh2LNpTpO8BaEluO8vmHAFfaPV3XnQ4I2KLs\nQAoWY77UyIg1dUnLA8vbniVpMeAPwE62b2vYZhKwsO0jJC0D3AEsZ/vFQfuKmnqfk/gAaeCtDdu5\nrV5iedKdjG+zuadD4RVC4tOkPuvblx1LEfIUgU8CK9nMLTue0L5Ca+q2H7I9K//8NHAbqX9xo7/D\nyyPdLQ48Njihh8q4CJgLfLLN5x0N/KDXE3r2Q2CjPC5NFawOPBwJvT5arqlLGkeqzd04aNXpwDqS\nHiTdgTimHhJFq2MNrlNtzjMifQ44ptUhayVWAz5KGuelYwrsm/8ccCo99j4eSottrkw9Her5eW7X\nAq1slEsvFwAH5jP2RkcCs2xvJmlV4GpJG9h+aoj9TIOXz9bm5ufNzOs2Ayh6ueHYHdl/HZclroQz\nviftdUbz37/3AU4CrSt1Lj5gvKSi9ncK/PIO6cAr7FsvLfv3PcLyeGDE7cEbAn/skXjj89zS50ub\nAXvkpt5Dm5r2U5e0IHApcIXtqUOsvxw41vb1eXk6cLjt3w/aLmrqFSGxIulGlhFr5BL/BVwMvDXP\nNtQ3JM4F/mRzYtmxjIXEr4ATbK4sO5YwOoXW1CUJOBOYM1RCz26H1CNC0nLAGqQBkkJF2TwAfJt0\nu/9IJgPH9FtCz6YC++cBv/pS7po5geijXivNaurvAnYFJkq6Kf/bVtLekvbO2xwH/Jek2cAvgcNs\nP97BmNtSxxpcl9o8BXiXxDuHjoGtgFWgO7PsdKBv/h9IX30/UOR+i9RCm8eRZpX6R+ej6Y46fp7b\nNeJZiO3raN5D5lFghyKDCr3P5hmJI4GTJN6RJ64GIA/adQJwlM2/Swty7KaS+tf/T9mBjFL0T6+h\nyt9R2nAhrTa62OYfkt5DOw96/CPAi6SL613RoTb/HFghT3vXc1poc+WSeh0/z+2qfFIPnZPPzg8G\nJufp0sgjAh4LHJ67QPatfIPVt+mD7o3DiDFfaqjySb2ONbhuttnmOtK9C5/LD30G+LPNjG7FAB1t\n81nANhIrdWj/ozZSm/NF0sqdqdfx89yuyif10BWHkwbCeitp0K4vlBxPYfJ8recC+5UdS5tWIH2+\n7y87kNBdMZ56KITECcCewNU2Hy87niJJrArcQBpr/dmy42mFxPbA/jbvKTuWMDaF9lMPoQ3Hkaa+\nO7rsQIpmczdwPbB72bG0IerpNVX5pF7HGlwZbbZ50uYddjk3nnWhzVOBA3N3zZ7QpM2VGvNlQB0/\nz+3qmTdoCD3uGtLcqluXHUiLKneRNLQmauohtEjiE8AuNtuUHctIJJYhlcKWarwpLPSnqKmH0Dk/\nBsZLrF12IE1MAGZFQq+nyif1Otbgos2dYfMv4BR65GakEdpcyXo61PO93a7KJ/UQCnYK8BGJpcsO\nZARRT6+xqKmH0CaJs4C7bI4rO5ahSNwJfMDmlrJjCWPXbu6MpB5CmyQ2AC4H3mzzQtnxNMrTDP4d\nWMIm5gqugLhQOkgda3DR5s6ymU2aHOZD3TrmUIZp8wbAzVVN6HV8b7er8kk9hA6ZChycB87qJVFP\nr7kov4QwCvnO0juBT9hcX3Y8AyTOAa6zOb3sWEIxovwSQhfkPuDfIo0n30sq250xtKbySb2ONbho\nc9ecDUyQOKSEY8/TZolFgNWgur1e6vjeblffzpQeQtlsnpbYFPhlnvnpqyXP9rQecEe+SSrUVNTU\nQxgjieWAq4ErgC+Uldgl9gE2svlkGccPnRE19RC6zOZhYCKwOfDtEofnjXp6qH5Sr2MNLtrcfTaP\nAVuSEuvpEvN3+phDtLny3RnLfp37wYhJXdLKkmZIulXSLZIOGGKbQyTdlP/dLOlFSUt2LuQQelOe\nz/Q9wDjgXIkFu3XsfKx1gNndOmboTSPW1CUtDyxve5akxYA/ADvZvm2Y7bcHDrK95RDroqYeaiH3\nQrkAeAHYuRsXLvPQBT+2WavTxwrdVWhN3fZDtmfln58GbgPeOMJTPgac3+rBQ6gim+eA9wP/Af43\n94zptKinB6CNmrqkcaQ3zo3DrF+U9NXzZ0UEVpQ61uCizeXLA33tDDwKXCbxuqKPMajNla+nQ++9\nzr2opX7qufRyAXBgPmMfyg7AdbbnjrCfacA9eXEuMMv2zLxuM4CilxuO3ZH9x3JvLAPjJfVMPK+8\n//wJ4PtwyQ3SYYfbt11a4P7HA7n9F0+E6Wemm1x7p/3xeW5/Of+8R27qPbSpaT91SQsClwJX2J46\nwnYXAT+x/eNh1kdNPdRSHvTrJGATYGubRwve//ykk6RVbJ4oct+hfIXW1CUJOBOY0yShL0F6w/68\n1QOHUBf5ZqSDSTcnXSOxQsGHWA14JBJ6gOY19XcBuwITG7otbitpb0l7N2y3E3Cl7ec6Fuko1bEG\nF23uPTa2OQr4EfBriVXGus+GNteing69/zr3ghFr6ravo4WLqbbPAc4pKqgQqsrmWIlnSIl9C5u7\nC9htbZJ6aC7GfgmhBBKfAY4m1diHvO+jjX1NB6bYXFFIcKGntJs7Y5TGEEpgc5rEs8B0iW3zFHlt\nyxdho496eFmM/VJB0eb+YHMecABwlcRG7T4/t/lNwHN5ULHK68fXudviTD2EEtlcIPEccKnEB22u\nbXMXGwI3dSC00Keiph5CD5DYgjTExsdtrm7jeV8DXrL5UseCC6UqtJ96CKE7bKYDHwB+KLFDG0+N\nenp4lcon9TrW4KLN/cnmOmA70njsH2m2fW5zrbozVuF17rSoqYfQQ2x+J7E18AuJReyR7v94x+uB\nhYD7uhRe6ANRUw+hB0msSZr39Fib7w+zzXbAQTZbdTW40FXRTz2ECrC5XWJT4JcSi9p8c4jNop4e\n5hE19QqKNleDzV+ATYG9Jb6YbzRqcMHW1CypV/F1LlqcqYfQw2zuy2fsVwOvlTgyj/oIvG51oo96\nGCRq6iH0AYmlgauA60jD+C4F/BVY0ualMmMLnRX91EOoIJvHgC2A/w84FXgbMCsSehis8km9jjW4\naHM12cwFtgZWBabBOf8oN6Luq8PrPFaVT+ohVInN06QblH4Nc35Xdjyh90RNPYQQeljU1EMIocYq\nn9TrWIOLNtdDtDkMpfJJPYQQ6iRq6iGE0MOiph5CCDU2YlKXtLKkGZJulXSLpAOG2W4zSTflbWZ2\nJNJRqmMNLtpcD9HmMJRmZ+r/Bg62vQ6wMbCfpLUaN5C0JHAysIPtdYEPdSTS0RtfdgAliDbXQ7Q5\nzGPEpG77Iduz8s9PA7cBbxy02ceAn9m+P2/3aCcCHYMlyw6gBNHmeog2h3m0XFOXNI40fvONg1a9\nFXh9LtP8XtJuxYUXQgihHS0NvStpMeAC4MB8xt5oQdI8iVsAiwK/kXSD7T8XGunojSs7gBKMKzuA\nEowrO4ASjCs7gBKMKzuAXte0S6OkBYFLgStsTx1i/eHAIrYn5eUzgF/YvmDQdt3pOxlCCBVT2HR2\nkgScCcwZKqFnPwe+K2l+YGHg7TDv1FvRRz2EEDqvWfnlXcCuwJ8kDcywciSwCoDtU23fLukXwJ+A\nl4DTbc/pVMAhhBCG17U7SkMIIXReZe8obfXGqaqRNH++EeySsmPpFklLSrpA0m2S5kjauOyYOknS\nEfl9fbOkH0lauOyYiibpLEkPS7q54bHXS7pa0p2Srsr3yFTGMG0+Mb+vZ0u6UNISzfZT2aROCzdO\nVdSBwBygTl/BvgVcbnstYH3S/RSVlLsW7wVsaHs9YH5g5zJj6pCzgW0GPfYF4GrbqwPT83KVDNXm\nq4B1bG8A3Akc0WwnlU3qLd44VSmSVgLeC5wB1OLCdD5zebftswBsv2j7yZLD6qR/kk5YFpW0AKkb\n8QPlhlQ829cCTwx6eEfgnPzzOcBOXQ2qw4Zqs+2rbQ/MQ3sjsFKz/VQ2qTca4capqjkJOBRqNRnx\nm4FHJJ0t6Y+STpe0aNlBdYrtx4FvAH8DHgTm2v5luVF1zXK2H84/PwwsV2YwJfgkcHmzjSqf1Jvc\nOFUZkrYH/mH7Jmpylp4tQLr57Xu2NwSeoXpfy18maVXgINJNOG8EFpP08VKDKoFTD4/alBglHQW8\nYPtHzbatdFLPN079DDjP9v+WHU+HvRPYUdJfgfOBzSX9oOSYuuF+4H7bA5MwX0BK8lX1X8D/2X7M\n9ovAhaTXvg4elrQ8gKQVgH+UHE9XSNqDVFZt6Y93ZZN6izdOVYbtI22vbPvNpAtnv7K9e9lxdZrt\nh4D7JK2eH9oSuLXEkDrtdmBjSYvk9/iWpAvjdXAx8In88yeAqp+oIWkbUkn1fbafb+U5lU3qvHLj\n1MTcxe+m/Auqi9p8NQX2B34oaTap98txJcfTMbZnAz8Afk+64Q/gtPIi6gxJ5wP/B6wh6T5JewKT\nga0k3QlsnpcrY4g2fxL4DrAYcHXOYd9rup+4+SiEEKqjymfqIYRQO5HUQwihQiKphxBChURSDyGE\nComkHkIIFRJJPYQQKiSSeqgMSS9JOrdheQFJj4x2GGJJS0jat2F5szoNaRz6UyT1UCXPAOtIek1e\n3oo0jMBob8ZYCvhsEYGF0C2R1EPVXA5sl3/ehTQOjuDlSRb+N0848BtJ6+XHJ+UJCmZIulvS/vn5\nk4FV8518Xyf9cVhM0k/zxAXndbdpITQXST1UzU+AnfNsQOvx6uGWvwL8IU84cCTpdvsBqwNbAxsB\nX84TqR8O3G17gu3DSH8cJpAmIlkbeIukd3W6QSG0I5J6qBTbN5OGpd0FuGzQ6ncB5+btZgBLS3od\n6Qz8Mtv/tv0YafS/5Rh6COPf2n4wD/06Kx8rhJ6xQNkBhNABFwNTgE2BZQetG26s+Rcafv4Pw382\n/tXidiGUIs7UQxWdBUyyPXgI3mvJY1JL2gx4xPZTDJ/onwJe16kgQ+iEOMsIVWIA2w8A3214bKD3\nyyTgrDxE7zO8Mjb3kLPo2H5M0vV5dvfL87/B28Uwp6GnxNC7IYRQIVF+CSGEComkHkIIFRJJPYQQ\nKiSSegghVEgk9RBCqJBI6iGEUCGR1EMIoUIiqYcQQoX8/2b5o7u9St0UAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "monthly_data.plot(title='Mean Hours of TV vs. Month')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As expected, TV watching decreases during the summer months"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(8.6265733580559285, 8.6735150444399256, 8.6836391549060625)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(avg_sleep_by_kid_age())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This ended up not being very exciting. People with a kid younger than 2 got 8.6 hours of sleep, people with a kid got 8.67 hours and people without a kid got 8.69 hours."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEdCAYAAAABymAfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHUW9//H3JyyCLEZ/OGHLEGVRRAmLIoYBAgOCAeNy\nXZAriHIBEa5eJCKCCq6o14jgxchVQcQ7gJc1KAgYDDKoKE4SciUoYZFFMSh7ACHJ9/dH9SQnJ2dm\neiZnSZ35vJ7nPNPVXae7euqcrtNV1VWKCMzMbPQa0+oEmJlZa7kgMDMb5VwQmJmNci4IzMxGORcE\nZmajnAsCM7NRzgXBGkjSBEnLJE1qdVpGStK9kk5pdTpGs+IzdGir09Eqo/38h8MFQQNI+oGkG1Zj\nF/cDmwK/rVOS6qY4t2VDvPYCXg98s9XpbTRJ75R0k6QnJD0j6XZJJ0lau4lp+Lmk82ts2hS4rFnp\nqCTp9AE+G0slvaxJyWjZ+efGBUFjRPEa2ZsjlkXEoohYUsc0rUTJSC5WHyV9wTYFNgMeBL5SsW5T\n4NcR8Y+IeKZe6V0TSfoccDEwC9gd2B6YDnwcuEbSWg0+/jqDbS8+Q/9sZBqGcC8rfy42BTaLiEdH\nukNJ65aNuwacfz4iwq86v4AfADcMsn1cEWcR8CTQC+xZsX0CsAyYVLHuFOBu4LnifT8D1iu2nQ7c\nVXWMrmIfnUX4COAFYDIwB/gncACwTvH+e4Bngf8Djh7Gud4LnFJj/X3AqVXhzwMzgMeBh4FjgfWA\nc4BHSYXKcVX72RA4q9i2GOgD3jFIerYtzvtNVevfWKzfugj/G7CgOOd/ADcBWwzjvHct9jetxrb+\nY51QhP8HuK5GvGuBCyvC+wO3AM8U53se8LLqzxXw78X/cympIFpW9dqriL8M+NeK9y8DjgcuAZ4u\n9vEO4KXARaTP4t3AO4fzeR3g/7PKZ7JGnF2K/8HfgKdId8AH1PgcfQH4NvB34NfA3sW57Af8svhc\n/AE4sOq9tc7/WODC4jweAE6ues//A/63+P/8FfgsVd9n0nfrlmIfTwJzgTc3+zpTz1fLE9COr+oP\nTtW29YE7ig/bLsArSRf554BXF3EmUFEQAO8EngAOArYEJpJ+mVcWBH+qOk6tgmAp8JviizQB2KRI\n69ziS7UV8B7gMeBDJc91oIJgpfXFF/ox4D+Kcz61SM/PKtadXKzbvniPgF8ANwKTijQfRSrE9h0k\nTbcA365a922gt1jelVQovh8YD7wW+BDDKwjOJF281hlg+8+B3xfL+wNLSL+G+7dvVqRhvyK8L+mC\ndhywNalq7UZgdtXn6glSdcfrgB2AjUmF2EVAR/Fap4i/DDi04v3LSBe3w4r/9zmkC951wOHFurOL\ndS8r+3kd4PxPZ+iCYO/iuNsD25Au+P8Etq363DxBuiBvA7ya9GNmGcUFuPh/nVfEG1t1vtXn/zBw\nJPAK4CPFun0r4swE7izS9ppiv48B1xfb1yb9aPl6cdytgbcBXa2+7qzOq+UJaMcXgxcER5B+iaxV\ntX4WcGaxPIGVC4ITgD8Caw+wz1W+dNQuCJYBe1TEeQXpwrtd1Xs/C8wpea7DKQgurwir+OJeVbXu\nUeAjRXgy6Rf7xlX7Pg+4YpA0HUP6ld9/QVy3CB9VhN9BuivZaDXy+JrB/kcUF9RieQzpF/60iu3T\ngPsrwrOBL1fto7PIsx0rPlePAi+uincDcF6NNNS6EH6jIrxJse6sinVji3VTyn5eB/lMLiUVlpWv\nQT9XpIt79efmhqo4k4s0vr1iXUexbv8hzv+bVfu6o///zoq7yX0qtq9NarPrLwheWsTZe6SfnTXx\n1bQGLVvuDaS60sclVa5/EalKoJZLSNUBf5Z0PelLeGVEPD2C4/+uYvn1pIvv76vSsjbpF2w9BTBv\neSAiJD0C3F61bhHpSw3pf7Uu8FBV+tYF/jTIsX5Maqg+GLii+Pti0v8R4HpSVdi9RaP+jaRC6h/D\nPCcNsT0gtflI+hHpl/jXi22HkaqM+r0BeKOkf6+xj21Z8X9aEKvX9lKZB3+XtJSV8+BxSc+zch4M\n9/Pa7wHSnU6l5/sXJL0c+BywT3GMtUlVhZ0V8YOBO03MrUj3ouJcxg2RprlV4b+w4lxfU/z9TcV+\nl0i6jVRFSUQ8Jul7wHWSbiTdjV0REYN9Htd4LgiabwypbvrtNbbV/GJFxF8kvZr0hdkX+AzwVUlv\njIgHSb9Qqi9KtRoSl0bE8xXh/s4Cb6px7EYMS/tCjWPUWtefrjGku4bX19jX8zXWpR2kL+vVpGqH\nK4q/V0XEk8X2xZJeD+xBqhL7MPA1Sd0R0VfyXP4I7CXpRVG7QXKHIk6/HwInSZpIyqvXAe+t2C5S\no/uFNfb1t4rl1W2Ar/5/11pXnQfD+rxW7jci7hlk+w9IVZ2fIN1BPkdq86huEF48wPtrfQaG6gBT\n5j3Vn/2VvlsRcbSks0jVUvsDX5B0fET89xDHXmO5IGicgS6kvyP9GnwqIh4pvbN0Ab+O9EvkM6SL\nw9tI9byLgA5JYyJiWfGWXUrs9vfF360i4qdl09JEt5GqKtaPiD8M870XAJdL2g54C6k6aLni/3Rz\n8TpN0h3AoaTG6DL+B/hY8fpa5QZJbyQV2h+vON4dkn5PyvsxwG0RcWfF224DXjvEhXMgz9O47/KI\nPq8l7Ql8IiJ+AiBpA1Kd+/w6H2cwld/TO4q/k0h3iRQ963YltRuseFP6PP4BOFPSDOBowAWBrWKj\nil9//Z4lXUBOAH4q6VTgLtLt7L7AHRFxVfWOJB1Z7Od3pLrtbmAjVnxwbyRVfXy+6E++C6khbFAR\nsVDSecB3JZ1EuiXegPTB3yQivjboDorklVxfK96g6yJilqSfky7oJ5EuEC8lfVGfjYjvDZKun5Ea\n+S4h1av/bPkBpKmkRs+bgUdI5zue9MVG0hak6reTI+LKWjuPiNskfRn4oqT1SY2pz5Dqr79Caiz+\nVtXbfkhqaA3gS1XbPgtcL2k66a7gKVKV0LtIPakG6wZ5L7CPpFeSerE8HvXrejzsz2uFtSSNY9V8\nfiQilpLumN4v6RbStejzpEKyMv5Q1W+rS/3HiIi7ijvJcyQdQ+qldCKpQT41YknbkDoszCS1+2xO\nKtB+v+qu8+HnCBojSF0I55B+Yfa/rii+0HuTfgGeT/oyXEaq/rivah/9HgU+SOpBcwepl81REfEL\ngKJ+8ijgfaSL5RGsuOBUp6va0aQeMKeSLoQ/J/0CvHsY51pmfa14ZdZNBS4v0rgA+AnpF/7CQROV\nLjQ9wI5AT8WdEqQC4q2krot/JF24vxAR5xfb1wG2I10ABjvGp0l3EfuSCtEFpLuA6aTG1qVVb+kB\nXla8Lqra1+xiPzuSukTOA75BurD3X9SD2v+z6aSL1jzS3WHdnkgfxud1lbeSOj38lVQP3/96iNTr\nDdJnegypDeByUgP871j5HMt+vkaq+n/6QVIX6mtJP7AeJLUpPVdsf5rUe+li0v/iUlIvtePrlJ6W\nUNES3pyDpQdsbgMejIi3Vm2bDFxFasQDuCwivti0xJmZVSmuWXeSOmd8otXpaZRmVw19jPSLdqMB\ntt8UEVObmB4zs+Uk7Umq+ppDuk6dQOrF9IMWJqvhmlY1JGlLYArwPcrXK5uZNdNapGrSuaSqoQmk\n5wqG21khK828IziT1E1soHrXACZJmkeqR5wWEXcMENfMrO6KtpqdW52OZmvKHYGkg4FFETGHgX/1\n9wHjI2IiqbdFzd4aZmZWX01pLC662R1G6v2wHumu4LKIOHyQ99wL7BpVIxVOnTo1nnvuOTbddFMA\nNthgA7bZZht22mknAObOTQ8OOrxmhi+99FLnV6bh/uU1JT0OD51f1113HQCbbropEydO5MQTT6z5\nQ7ypvYYAJO1Nqvap7jU0jnTXEJJ2A34cEROq33/44YfHWWed1ZzEWt195Stf4eSTT251MmwEnHd5\n6+vro7u7u2ZB0KoHyvofzjgGICLOJT04c6ykJaQHcw6p9caHH364WWm0Bliw4AF6exs6TP+o19m5\njM7O+v/Au//+++u+T1szNL0giIibSAM19RcA/evPIQ2XYG1s8WKYOnXQ57RsNc2c+SSdndXPspkN\nLLsniw844IBWJ8FWQ3f3v7Y6CTZChx7q6X/bVXYFQX+jiOXpda/bs9VJsBHq6upqdRKsQbIrCCp7\nLlh+5s+/udVJsBHq7e1tdRKsQbIrCMzMrL6yKwhcNZQ3Vw3ly1VD7Su7gsDMzOoru4LAbQR5cxtB\nvtxG0L6yKwjMzKy+sisI3EaQN7cR5MttBO0ru4LAzMzqK7uCwG0EeXMbQb7cRtC+sisIzMysvrIr\nCNxGkDe3EeTLbQTtK7uCwMzM6qtV8xGM2Ny5c9lll11anQwbodRGcFCrk2EjcNlltzBu3F6tTkZb\na9RcEkPJriAws9ZYtEgcdZTnkmikVs0l0dSqIUlrSZoj6eoBtp8t6S5J8yTtXCuO2wjy5jaCfDnv\n2lez2wg+BtxBMVVlJUlTgG0iYlvgaGBGk9NmZjYqNa0gkLQlMAX4HlBrAuWpwAUAEXErMLaY0H4l\nfo4gb36OIF/Ou/bVzDuCM4FPAMsG2L4F8EBF+EFgy0YnysxstGtKY7Gkg4FFETFH0uTBolaFV6lC\nWrhwIe9613F0dGwFwAYbbMwrX7nj8vrL/l8tDo883NER/Mu/7AGseJq0vw/56oaT2cDkimUcrmN4\n/vzFdHVNAuqbf+kz0vrza+dw+j4uq0t+9fb20tPTA0BnZycdHR10d3dTiyIa31VJ0peBw4AlwHrA\nxsBlEXF4RZzvALMj4uIifCewd0T8rXJfs2bNiv32q30yVh8zZz5JV1djei709q7F1KnuedJIjco/\n513jNfK719fXR3d3d61q+eZUDUXEKRExPiJeARwC3FhZCBRmAocDSNodeLy6EAC3EeTO9cz5ct61\nr1Y9RxAAko4BiIhzI+IaSVMkLQQWAx9sUdrMzEaVphcEEXETcFOxfG7VtuOHer+fI8ib+6Lny3nX\nvjzWkJnZKJddQeA2gry5njlfzrv2lV1BYGZm9ZVdQeA2gry5njlfzrv2lV1BYGZm9ZVdQeA2gry5\nnjlfzrv2VaogkHRi/7DQknaXdL+keyVNamzyzMys0creEZwA3FMsfwX4BvBF0kByTeU2gry5njlf\nzrv2VfaBso0j4glJGwM7At0RsVTSNxqYNjMza4KydwQPSNqDNE7QL4tC4CVA0+dUcxtB3lzPnC/n\nXfsqe0fwCeBS4HngX4p1BwO3NiJRZmbWPKUKgoi4BtisavWPi1dTuY0gb65nzpfzrn2VHnRO0quB\n9wDjIuI4YGtgXeD2BqXNzMyaoGz30XcDN5Omk+yfR2AjUu+hpnIbQd5cz5wv5137KttY/AVg/4g4\nhjTLGMBcwPU0ZmaZK1sQvJzaVUADTUTfMG4jyJvrmfPlvGtfZQuCPtKcw5XeC/y27IEkrSfpVklz\nJd0h6YwacSZLekLSnOL16bL7NzOzkSnbWPzvwA2SjgReLOl6YDvgzWUPFBHPSdonIp6RtDbQK6kr\nInqrot4UEVMH2k9qI/Dk9blK9cwHtToZNgLOu/ZVtvvonUWvoYOBnwD3Az+NiKeGc7CIeKZYXBdY\nC3i0RjQNZ59mZrZ6SncfjYjFwCWrczBJY0jVTFsDMyLijurDAJMkzQMeAqZVx3EbQd5cz5wv5137\nGrAgkHRdRBxQLA/UbywiYq+yB4uIZcBOxfAU10maHBGzK6L0AeOL6qO3AFeSqqCWu/TSS4ELgQnF\nmrGkzkuTi3D/7hweaXj+/MV0daWBZXt7U81dV1dXXcKpemGDlp5fu4cbmX9rwvm1czh9P5bVJb96\ne3vp6ekBoLOzk46ODrq7a1erKyJqb5D+NSL+p1g+omakVBBcMMC2QUn6DPBsRHx9kDj3ArtGxPIq\npOnTp8e0aSeO5JBW0syZT9LV1ZhhpGbM+BWnnup65kZqVP457xqvkd+9vr4+uru7a1a9D3hH0F8I\nFO6MiN9Ux5H0xrKJkLQJsCQiHpe0PrA/8LmqOOOARRERknYjFVS12hHMzKxOyrYRXA9sXGP9tcDL\nSu5jM+CCop1gDHBhRMySdAxARJwLvAs4VtIS4BnSaKcrcRtB3lzPnC/nXfsatCAoLtpKi6p+5mBr\nVjxlPKSImA/sUmP9uRXL5wDnlN2nmZmtvqEeKFsCvEBq3VtS9VoAzGho6mrwWEN583g1+XLeta+h\nqoZeWfz9JbAnK/r4B/BIxXMBZmaWqUELgoi4r1jsbHxSynEbQd5cz5wv5137Guw5gu9GxFHF8oUD\nRIuIOHyAbWZmloHB2gjuqVi+u+q1sGK5qdxGkDfXM+fLede+BnuO4IyK5dObkhozM2u6sjOUzZN0\nkqTxjU7QUNxGkDfXM+fLede+ys5HcDrwBmCBpJskHSOp7INkZma2BitVEETEFRHxbtLTwecB7wQe\nlHR1IxNXi9sI8uZ65nw579pX6WGoASLiKUkXAY+T5hSY0pBUmZlZ05RtI5Ck/SR9H/gbabC4a1kx\nFnTTuI0gb65nzpfzrn2VvSP4C7AYuAjYo8aEMmZmlqmyjcVvj4htIuIzrS4E3EaQN9cz58t5174G\ne7J4QsUQE49IemWteBFxT631ZmaWh8GqhuYDGxXLCweJV/auoi7cRpA31zPny3nXvgZ7snijiuWm\nXuzNzKx5yvYaOnuA9d8s+f71JN0qaa6kOySdMUC8syXdVTzJvHOtOG4jyJvrmfPlvGtfZX/pf3CA\n9aVGHo2I54B9ImInYEdgH0ldlXEkTQG2iYhtgaNpwaQ3Zmaj0VBTVR7ZH0/Sh0gT00SxbmvgkbIH\nqpjEZl1gLaB6UvqpwAVF3FsljZU0LiL+VhnJbQR5cz1zvpx37Wuo5wgOI1341ymW+wXpwbIPlD1Q\nMedxH6kAmVGjG+oWwAMV4QeBLYvjmJlZgww1Q9lkAElfiohTV+dAEbEM2EnSS4DrJE2OiNlV0VT9\ntur9nHXWWcCFrHioeSywEzC5CPfv0uGRhufPX0xX1yQAent7Aejq6qpL+KqrzgHe1NLza/dwo/Iv\ntRFs0PLza+dw+h8vq0t+9fb20tPTA0BnZycdHR10d3dTiyJWudauGkk6ALgvIv5Yse5VQGdE3DDk\nDlbd32eAZyPi6xXrvgPMjoiLi/CdwN7VVUPTp0+PadNOHO4hbRhmznySrq6lDdn3jBm/4tRTD2rI\nvi1pVP457xqvkd+9vr4+uru7q39sA+Ubi88Bnqpa9zTw7TJvlrSJpLHF8vrA/sCcqmgzKRqfJe0O\nPF5dCIDbCHLneuZ8Oe/aV9mxhl4eEX+pWvdXYFzJ928GXFC0E4wBLoyIWZKOAYiIcyPiGklTJC0k\njWs0UE8lMzOro7IFwb2SuiNiVsW6ycC9Zd4cEfOBXWqsP7cqfPxQ+0rPEdSu57I1X6oDdfVCjpx3\n7atsQXAacFkxDPXdwDakX+z+1W5mlrmyM5RdBbwZ2JD0k+DFwJsj4soGpq0mtxHkzfXM+XLeta/S\nM5RFxG+B3/aHJb1W0tci4qSGpMzMzJpiWIPJFb1/PiapD5gH7NCYZA3MYw3lzePV5Mt5176GvCOQ\ntC7wVtJTxAcC9wHjgTdERF9DU2dmZg036B2BpG+TuomeQZqfYLeI2I40ef2DjU/eqtxGkDfXM+fL\nede+hroj+DDwf8DpwDXFKKJmZtZGhmoj2Bq4DPgaabrKHknvII0e2hJuI8ib65nz5bxrX4MWBBFx\nb0R8DtgWmAI8A5wPbAJ8SVLTG4vNzKy+yj5HEBFxc0T8G2m4iPcDnUDTf567jSBvrmfOl/OufQ17\nLuKIeDYieiLiAFaMBW1mZplarUnpI+KheiWkLLcR5M31zPly3rWv1SoIzMwsf9kVBG4jyJvrmfPl\nvGtfwx1iYoykzRqVGDMza75SBYGkl0rqAZ4jDUONpKmSvlj2QJLGS/qFpD9I+j9JH60RZ7KkJyTN\nKV6fro7jNoK8uZ45X8679lX2juA7wJPAVsA/i3W/Bg4ZxrFeAE6IiB2A3YHjJG1fI95NEbFz8Spd\n0JiZ2ciUHYa6G9gsIl6Q0tzHEfGIpI6yB4qIh4GHi+WnJS0ANgcWVEWtOblyP7cR5M31zPly3rWv\nsncEjwMvr1whqROonse4FEkTgJ2BW6s2BTBJ0jxJ10h6zUj2b2Zm5ZUtCL4HXCppX2CMpDcBFwDn\nDv62VUnaELgU+FhEPF21uQ8YHxETgW8Bq8yA5jaCvLmeOV/Ou/ZVtmroq8CzwH8B65DGG/oOcNZw\nDiZpHdIgdj+qNc1lRDxVsXytpG9LellEPNq//qabbiKNiD2hWDMW2AmYXIRnF38dHml4/vzFdHVN\nAqC3txeArq6uuoTvued2YIOWnl+7hxuZf2vC+bVzOBW2y+qSX729vfT09ADQ2dlJR0cH3d3d1KKI\nqLlheQRpbeD7wDGrMwy1UuPCBcA/IuKEAeKMAxZFREjaDfhxREyojDNr1qzYb7/aJ2P1MXPmk3R1\nLW3Ivnt712Lq1I0bsm9LGpV/zrvGa+R3r6+vj+7u7pptsEPeEUTEEklvBlY3dXuQBqu7XdKcYt0p\npMHriIhzgXcBx0paQhrpdDi9kszMbATKVg2dCXxe0mkR8fxIDhQRvQw97PU5wDmDxUltBL4jyFW6\n9T2o1cmwEXDeta+yBcFHgXHAxyU9QurdA2mE6s6GpMzMzJqibEHw/oamYhj8HEHe3Bc9X8679lWq\nIIiI2Q1Oh5mZtUipgkDSF0jVQf0tzsu7GkXEZxuQrgG5jSBvrmfOl/OufZWtGhpPxcWfNF3lXsAV\ndU+RmZk1VdmqoSOq10k6EDi03gkaitsI8uZ65nw579rX6kxMcwPw9nolxMzMWqPsfASvrHq9Fvgi\ncH9jk7cqjzWUN49Xky/nXfsq20awsCr8DDAX+EB9k2NmZs1Wto1gjZnb2G0EeXM9c76cd+1rRBd4\nSftI2rveiTEzs+Yr20bwS0l7FMufBC4GLpJ0aiMTV4vbCPLmeuZ8Oe/aV9k7gh2A3xTLRwP7Am8E\nPtyIRJmZWfOUbSweAyBpa4CI+EMxv8BLG5WwgbiNIG+uZ86X8659lS0IbiHNTrYZK54m3hp4pBGJ\nMjOz5ilbNXQEaQL7ecDpxbpXM8ypKuvBbQR5cz1zvpx37ats99G/A5+qWveT4RxI0njgh0AHadyi\n/46Is2vEOxt4C+lZhSMiYk51HDMzq58BCwJJn46ILxbL/aOPwooRSCFNTFN29NEXgBMiYq6kDYHf\nS7ohIhZUHHMKsE1EbCvpjcAMYPfKnbiNIG+uZ86X8659DXZHsEXFcvXoo5AKhOp1A4qIh4GHi+Wn\nJS0ANgcWVESbSprgnoi4VdJYSeMi4m9lj2NmZsMzYEEQEcdWLB9Rz4NKmgDsDNxatWkL4IGK8IPA\nlsDygsDzEeTNY9rny3nXvsr2GkLS9sC7gXERcZykVwPrRsTtwzlgUS10KfCxiHi6VpSqcOm7DjMz\nG76yM5S9G/g2cDlpDoLjgI2AM4D9yh5M0jrAZcCPIuLKGlEeIlVD9duyWLfcwoULSZ2YJhRrxgI7\nAZOL8Ozir8MjDc+fv5iurkkA9Pb2AtDV1VWX8IpjNu98Rlu4UfmX2ghaf37tHE53Xcvqkl+9vb30\n9PQA0NnZSUdHB93dtWtTFDH0D25JdwKHFA29j0XES4uL+l8jYpMhd5D2IVL9/z8i4oQB4kwBjo+I\nKZJ2B74ZESs1Fs+aNSv2289VQ400c+aTdHUtbci+e3vXYurUjRuyb0salX/Ou8Zr5Hevr6+P7u7u\n6hoXoPxzBC8HalUBLRtGOvYA3g/sI2lO8XqLpGMkHQMQEdcA90haCJwLfKR6J36OIG/ui54v5137\nKttG0AccRtGjp/Be4LdlDxQRvZQoeCLi+LL7NDOz1Ve2IPh34AZJRwIvlnQ9sB3w5oalbAB+jiBv\n7oueL+dd+yr7ZPGdRS+hg4GfkKao/Anp6V8zM8tY6YlpImJxRFwSEV+LiIuBJaSnhZvKbQR5cz1z\nvpx37Wt1p6Cs2QJtZmb5WGPmIi7LbQR5cz1zvpx37Wt1CgI/8Wtm1gYGbSyWNFilYEuqhTzWUN48\nXk2+nHfta6heQ98fYvt365UQMzNrjUELgoj4QZPSUZrbCPLmeuZ8Oe/aV3aNxWZmVl/ZFQR+jiBv\n7oueL+dd+8quIDAzs/oasCCQ9JuK5dOak5yhuY0gb65nzpfzrn0NdkewnaT1iuVpzUiMmZk132C9\nhq4C7pJ0H7D+AM8URETs1ZCUDcDPEeTNfdHz5bxrX4NNXv9BSXsCWwGvB76H5xM2M2s7Qz1HcDNw\ns6QXRcQFg8UdiqTzSD8nFkXE62psn0y6C7mnWHVZRHyxOp7bCPLmeuZ8Oe/aV9n5CL4vaR/gcGAL\n4EHSBPQ3DuNY5wPfAn44SJybImLqMPZpZmarqVT3UUn/BlwC/BW4HHgY6JF0dNkDFXcXjw11qKH2\n4+cI8ua+6Ply3rWvslNVfhLYPyLm9a+QdDGpUPjvOqUlgEmS5gEPAdMi4o467dvMzAZQtiB4GbCg\nat0fgZfWMS19wPiIeEbSW4ArSfMir2ThwoXAEcCEYs1YYCdgchGeXfx1eKTh+fMX09U1CYDe3l4A\nurq66hJecczmnc9oCzcq/1IbQevPr53D6a5rWV3yq7e3l56eHgA6Ozvp6Oigu7t2j0tFDN3xR9JM\n0jzFn4yIxZI2BM4AJkTEW4fcwYr9TACurtVYXCPuvcCuEfFo5fpZs2bFfvu5+2gjzZz5JF1dSxuy\n797etZg6deOG7NuSRuWf867xGvnd6+vro7u7u2b1e9khJj4M7Ag8IWkR8DgwsVhfF5LGSVKxvBup\nkHq0Op7bCPLmeuZ8Oe/aV9leQ38B9pI0Htgc+EtEPDCcA0m6CNgb2ETSA8BpwDrF/s8F3gUcK2kJ\n8AxwyHD2b2ZmI1O2jQCA4uI/rAKg4r3vG2L7OcA5Q+3HzxHkzX3R8+W8a18efdTMbJTLriBwG0He\nXM+cL+cUTVg6AAANkklEQVRd+8quIDAzs/oq1UYgaQfgHxHxsKSNgE8AS4H/jIhnGpnAam4jyJvr\nmfPlvGtfZe8ILgJeUix/HdgT2B04txGJMjOz5ilbEGwVEX+UNAZ4J/AeUnfPAxuWsgG4jSBvrmfO\nl/OufZXtPvqcpI2B7YE/R8QjktYB1hvifWZmtoYrWxD0ADcCGwH/VazbhRVzBzSN2wjy5nrmfDnv\n2lfZJ4tPkHQA8HxE/KJYvRQ4oWEpMzOzphiyjUDS2pLuBmZXFAJExG3DnJimLtxGkDfXM+fLede+\nhiwIImIJsAxYv/HJMTOzZivbRnAmcImkM0hjDS0fuzoimtpO4DaCvLmeOV/Ou/ZVtiDobyDev2p9\nAGvVLzlmZtZspZ4jiIgxA7yaXgi4jSBvrmfOl/OufXmsITOzUa7sWEMD/RSIiNirjukZktsI8uZ6\n5nw579pX2TaC71eFNwWOBH5U9kCSzgMOAhYNNGexpLOBt5BmKDsiIuaU3b+ZmY1M2TaCH1S9vkK6\nYO83jGOdzyBjE0maAmwTEdsCRwMzasVzG0HeXM+cL+dd+1qdNoKHSBPYlxIRNwOPDRJlKnBBEfdW\nYKykcauRPjMzK6FsG8GRVDw7AGxAGoX013VMyxasPB/yg8CWwN8qI7mNIG+uZ86X8659lW0jOIyV\nC4LFwC2kB83qSVXhqI5w6aWXAhcCE4o1Y4GdgMlFeHbx1+GRhufPX0xX1yQAent7Aejq6qpLOFUv\nbNDS82v3cCPzb004v3YOp+/HsrrkV29vLz09PQB0dnbS0dFBd3c3tShilWttw0iaAFxdq7FY0ndI\n4xldXITvBPaOiJXuCKZPnx7Tpp3YhNSOXjNnPklX19KG7HvGjF9x6qkHNWTfljQq/5x3jdfI715f\nXx/d3d3VP7aB8ncESNoWOBTYnNQ+cHFE/Kk+SQRgJnA8cLGk3YHHqwsBMzOrv1KNxZLeCvweeBXw\nKPBq4DZJbyt7IEkXAb8CXiXpAUkfknSMpGMAIuIa4B5JC0lTYH6k1n7cRpA31zPny3nXvsreEZwB\nvK1yGGpJk0ljEF1VZgcR8b4ScY4vmR4zM6uTst1HtwCqOxHfQurV01R+jiBv7oueL+dd+ypbEMwD\npvUHJAn4OOCrsplZ5spWDR0LXC3pY6S+/uNJw0C8tVEJG4jbCPLmeuZ8Oe/aV9k5ixdI2h7YndRr\n6C/ArRHxfCMTZ2ZmjVd6iImIeCEibo6IS4q/LSkE3EaQN9cz58t5174GvSOoMfx0sPLTv00fhtrM\nzOprqKqh/uGn+wuAc0j9+1WxvqncRpA31zPny3nXvgYtCCLiB5VhSWdGxAUNTZGZmTVVdlNVuo0g\nb65nzpfzrn1lVxCYmVl9DdVY3M2KdgABa0vatzJORNzYoLTV5DaCvLmeOV/Ou/ZVprG4skH4H6w6\nf/Er6poiMzNrqqEaiyc0KR2lpTaC2pMr2Jov1TN7TPscOe/al9sIzMxGuewKArcR5M31zPly3rWv\n7AoCMzOrr6YWBJIOlHSnpLskfbLG9smSnpA0p3h9ujqOnyPIm/ui58t5175Kz1m8uiStRZrRbD/S\nnMe/kzQzIhZURb0pIqY2K11mZqNdM+8IdgMWRsR9EfECcDFQa85j1Vi3nNsI8uZ65nw579pXMwuC\nLUiT2vR7sFhXKYBJkuZJukbSa5qWOjOzUappVUOUG6m0DxgfEc9IegtwJbBdZYSzzjoLuBCYUKwZ\nC+wETC7Cs4u/Do80PH/+Yrq6JgHQ29sLQFdXV13CV111DvCmlp5fu4cblX+pjWCDlp9fO4fT/3hZ\nXfKrt7eXnp4eADo7O+no6KC7u/YzWIpozkjSknYHTo+IA4vwp4BlEfHVQd5zL7BrRDzav2769Okx\nbdqJDU/vaDZz5pN0dS1tyL5nzPgVp57qh5IaqVH557xrvEZ+9/r6+uju7q5Z9d7MqqHbgG0lTZC0\nLvBeYGZlBEnjJKlY3o1UUD1aGcdtBHlzPXO+nHftq2lVQxGxRNLxwHXAWsD3i7mQjym2nwu8CzhW\n0hLgGeCQZqXPzGy0amYbARFxLXBt1bpzK5bPIc2CNiCPNZQ3j1eTL+dd+/KTxWZmo1x2BYHbCPLm\neuZ8Oe/aV3YFgZmZ1Vd2BYHHGsqbx6vJl/OufWVXEJiZWX1lVxC4jSBvrmfOl/OufWVXEJiZWX1l\nVxC4jSBvrmfOl/OufWVXEJiZWX1lVxC4jSBvrmfOl/OufWVXEJiZWX1lVxC4jSBvrmfOl/OufWVX\nEJiZWX1lVxC4jSBvrmfOl/OufWVXEJiZWX01rSCQdKCkOyXdJemTA8Q5u9g+T9LOteK4jSBvrmfO\nl/OufTWlIJC0FvBfwIHAa4D3Sdq+Ks4UYJuI2BY4GphRa18LFy5scGqtke655/ZWJ8FGyHnXvpp1\nR7AbsDAi7ouIF4CLgbdVxZkKXAAQEbcCYyWNq97R4sWLG51Wa6DFi59sdRJshJx37atZBcEWwAMV\n4QeLdUPF2bLB6TIzG/WaVRBEyXga6n0PP/zw6qfGWmbRoj+3Ogk2Qs679tWsyesfAsZXhMeTfvEP\nFmfLYt1Ktt56azbd9PDl4YkTJ7pLaQP09TVmv1Om7Mopp8xqzM5tuUbkn/OuOeqVd3PnzmXevHnL\nwxMnTqS7u7tmXEWU/bE+cpLWBv4IdAN/AX4LvC8iFlTEmQIcHxFTJO0OfDMidm944szMRrmm3BFE\nxBJJxwPXAWsB34+IBZKOKbafGxHXSJoiaSGwGPhgM9JmZjbaNeWOwMzM1lzZPVks6elWp8FGTtIy\nSRdWhNeW9Iikq4e5n9mSdq1/Cm0g1d89SUdI+laxfIykw4Z4//L4tmZpVmNxPfkWJm+LgR0krRcR\nzwH7kzoODDdfYwTvsdVT/f9eHo6Ic0fwfltDZHdHUIuknST9phia4nJJYyV1SLqt2D6x+CW6ZRG+\nW9J6rU31qHYNcFCx/D7gIoquw5I2kHSepFsl9UmaWqxfX9LFku6QdDmwPqt2N7bmWv7/l3S6pBOL\n5TdIul3SHEn/KWl+RfzNJV0r6U+SvtqKRNuq2qIgAH4IfCIiJgLzgdMiYhGwnqSNgD2B3wF7SdoK\n+Fvxa9Ra4xLgEEkvAl4H3Fqx7VRgVkS8EdgX+E9JLwaOBZ6OiNcApwG74l+YzbZ+cXGfI2kO8DlW\n5EHlHdr5wFERsTOwhJXzaSfgPaR8f6+k6gdLrQVyrBpaiaSXAC+JiP4RsS4A/rdY/hWwB6kgOIM0\n1pEAj57VQhExX9IE0t3AT6s2vxl4q6RpRfhFQCcpD8+qeL8Hvmm+Z4uLOwCSPgC8vjJC8X3csBgm\nBqAHOLgiyqyIeKqIewcwgRrPC1lzZV8Q1FBZXfBLYC/SheQq4GTSr5OftCBdtrKZwNeBvYGXV217\nZ0TcVblCSjVHzUmalVQmP6rj/LNieSmpO7m1WPZVQxHxBPCYpK5i1WHA7GL5ZuD9wF2R+sk+CkwB\nepudTlvFecDpEfGHqvXXAR/tD1QMR/5L4NBi3WuBHZuRSCtNpO7oTwBPSdqtWH9IifdZi+V4R/Bi\nSZWD000HPgB8p6hLvpviYbSI+HPxS/KXRdybgc2LD6u1RgBExEOkocn71/XXI38B+GZR9TMGuIc0\nMu0M4PyiOmEBcFszE21A7V5DtdoIjgS+K2kZcBPwRI04A+3TWsAPlJlZXUnaICIWF8snA+Mi4oQW\nJ8sGkeMdgZmt2Q6S9CnS9eU+4IiWpsaG5DsCM7NRLvvGYjMzWz0uCMzMRjkXBGZmo5wLAjOzUc4F\ngVkdSfqUpO+2Oh1mw+FeQzYqSLoP6CANa9Dv/Ij4aO13mI0efo7ARosADo6IG0e6A0lrR8SSOqbJ\nbI3gqiEb1SRtLelGSX8vZkr7UTGCZv/2+ySdVAx58VQRf5mkwyX9uXjPKRXxT++fgU3ShCHiri/p\nAkmPFvMsnFQ5fIqkT0p6UNKTku6UtG+T/i02yrggsNFkoAHOvgRsBmwPjAdOr9p+CPAWYCwrqpb2\nALYDuoHPSnpVsb5WXetAcU8jjYz7CtJMbe/vf38R5zjg9RGxMWl47vvKnabZ8LggsNFCwJWSHqt4\nHRkRd0fErIh4ISL+DpxJGhq7XwBnR8RDEVE5hPLnIuKfEXE7MA+YWHGcagPFfTfw5Yh4ohiE76yK\n9y8lzcWwg6R1IuL+iLinDv8Hs1W4jcBGiwDeVt1GIGkc6QLcBWxE+nH0aNV7H2BVD1csPwNsOMix\nB4q7edW+H1ye2IiFkv6DdHeyg6TrgI9HxF8HOY7ZiPiOwEa7L5N+fb82Il5Cms+i+nvRqK51fyVV\nRfWrXCYiLoqIPYGtijR4jl9rCBcENprUqrbZEFgMPFnMn/uJJqbnx8CnJI0tjn08K9oItpO0bzGv\n8z+B51i566tZ3bggsNHkaklPVbwuI03Avgtp8pSrgcsY+g5gsO3Vk68MFvfzpOqge4HrSXNtP19s\nexFpnu1HSHcOmwCfGiJdZiPiB8rM1hCSjgXeExH7tDotNrr4jsCsRSRtKmkPSWOK7qIfB65odbps\n9HGvIbPWWRf4Duk5gseBi4BvtzRFNiq5asjMbJRz1ZCZ2SjngsDMbJRzQWBmNsq5IDAzG+VcEJiZ\njXIuCMzMRrn/D0p/1ttNESVpAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "avgs = avg_leisure_by_overtime_earnings()\n",
+ "y = [avgs[0], avgs[1], avgs[2]]\n",
+ "x = range(3)\n",
+ "plt.bar(x,y)\n",
+ "plt.xticks(range(3), [\"Low\", \"Med\", \"High\"], ha='left')\n",
+ "plt.xlabel(\"Earnings\")\n",
+ "plt.ylabel(\"Hours of Leisure Activities\")\n",
+ "plt.title(\"Leisure Time vs. Overtime Earnings\")\n",
+ "plt.style.use('bmh')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This one was also not as exciting as I had hoped...it seems these people have found a way to earn money while being leisurely. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAEdCAYAAAB38NKUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOX1+PHPmew7W0ISwhLCJqus7iuICNatVVvrVv3q\nz7bf6tfWfbcqgltrW621dbfaWq22KoqIouLKLoKyhiUJBAhLQkIgy/n9cW/iMGSZQCZzJznv12te\nmbvM3JPJZM48z3mee0VVMcYYY9o7X7gDMMYYY9qCJTxjjDEdgiU8Y4wxHYIlPGOMMR2CJTxjjDEd\ngiU8Y4wxHYIlPBPxRGSdiNwa7jgAROQuEVkV7jjAW7EY4wWW8DxIRHqISLWIFIpIVLjjaSsiUtvI\n7Q/NPFTdW5sRkWPd2HoFbHoQOCLExz6xideq7vY08ECoY2kkvgwR2SciP29k+3kiUiMieSE49nL3\n9x/c2s9tIp8lPG+6HFgBJAA/CPXBxBEd6uME6ZdAZsDtlrBG1DTxX1DVclXdHuJjfsr+r8/DQH7A\numtUtaINYjmAqm4B3gCuaGSXK4APVXVNax5XRI4H8oAFwJWt+dymfbCE5zEi4gMuA/4I/B2/f1wR\nuUJEdopIXMBjbhSR9X7L/UTkNRHZISLbRWSmiAz1236piFS5LYVFQCUwXkT6iMi/3ZZluYh8LSIX\nBhwrQUSedOPYLiJ/EJGpgV1nIvJjEVksIntEJF9EHhaRxCBegl2quiXgttvveUeIyGciUikiK0Xk\nvAZew1oRuSBg3fsi8ozfcrSI3Ckia9znKvBvSYrINSKySETKRGSTiLwsIpnutj7Ax+6u+e7xPnC3\nHdCNKCKXuC2PvSKyUUTu8W+5i8gcEfmriNzuHqtERJ4TkaSGXiBVrfJ/fYByoDbgNSsLjKVuWUTO\nFZHV7t/4NRFJdtetEJFSEfmXiKQG/A4t/Xv+BThcREYHPE9f4GR3OyISIyKPuK9LpYgUicjLTTxv\nU64EXgemARc18H8i7nt1q/t7vuj+nasC9jtFRD4VkQr3ffG0iHQ5yJiMl6iq3Tx0A6YApUAyMAyo\nBnq721KBCuC8gMcsA+5173cHNgOPAUOA/sAfgG1AN3efS4Ea4AvgBKAP0A0YCvzCPW4u8L9AFXCi\n37H+4D7/6e5zTwV2ACv99rkU2A781H3u44AlwPPN/O61wE+b2J4AFAJvuTEeCXyF84F/S8DzXBDw\n2FnA037LzwHFboy5wBjgar/tV+N8MPd2j/MpMMfd5sNpedcCo4EMoJO77S5gVcDfsxq4EegHnOe+\nNr/122eO+xo+DAwATgFK/Pdp5nXb75iNrXeXdwNvun/r44EtwHvA2+5reoz7953WCn/PVcATAevu\nc58/2l3+NbDRjSUn8O/Qgv+bLsAe4EQgGigCLgrY59dAmft75AHXuq/zPr99TnbfT7909xkDfFD3\nt7dbZN/CHoDdAv4g8B//DwlgLnCP3/LLwFt+y2PcD97+7vJdwOcBzynAapxurroPsFrgmCDieQN4\n0r2fhNMa/FnAPp+zf8JbB1wZsM/x7jHTmjhWrfuhVRZwO9fd/j/ucprfY4a4jws64eEknlrgnBb8\nXUa6j8lyl491l3sF7HcX+yeZT4B/BOxzNc4Xl7oP/TnAooB9Hgc+CzK2/Y7ZRCx34XyB6eK37k84\nCbmr37rfA/Na4e95A7ALSHSXo3C+sEwPONbsVvi/uRb41m/5XuCTgH0KgbsD1r0MVPktzwGmBuzT\ny/1dRxxqnHYL7826ND1ERHoAk4En/FY/CVzm1wX2HDBRRLq5yxcDX6pqXdfVWGC02xVXJiJlOC3G\n3jgf9P7mBRw/UUSmicg3brdamRtP3cCMfkAsTsvQ3xe4tSwRSXf3/11ADDNwBpYExhDoFmBEwG2G\nu20wsFxVd9XtrKrLcD5UW2KU+/O9xnZwu3tnisgGESnFSVzgvI4tMZjvuz/rfAzE47Qg6iwJ2GcT\nTmu9tRXq/nW9YmCzqpYErMuAQ/57PoPze/7YXZ6CU198MmCfYW4X659F5BwRiTmI3+sK3G5S19+A\no8QdvCIiaUAWDb93/Y0Frg34XZcR3HvXeJxXBioYx+U434Lniew3FqKuC+0NnJbKNuCnIvI4zofJ\nHX77CvA+TndkIP/EUKOq+wK2PwicgfNteQVOK+RhnK5Uf02NiKz7EnU18GED2wubeCxAsaqubWK7\nNLGtjjawX2wQj3MO4Iy8nIHz5eIunNe7J87rGvTztIACgX8LJTQ19qqAZW1kXd2xD/rvqapbReQ/\nOLW1p2lgsIqqLhGRXJxu3JOAR4F7RORIVS0L5hcSZ7DKIOBBEXnQb5PPPfb/BfxuTT4dTg3whQa2\nFQcTj/EuS3geIc5glctxahz+RXvBafVcCbyhqjUi8nfgIpyReanAP/z2n4/TZVmoqntbGMZxwIuq\n+qpfTANxWhvgdIvuA44GvvN73JG4HySqWiwiG4FBqvpUC4/fnGXAFSKSVtfKE5EhQFrAfluAHnUL\n7uCFwUDdB+1C9+epwGsNHGcsTsvk/+peQxEZG7BPXYJqbtrIMpw66eN+607A+TLRqqMUQ6EV/p5/\nAWaJyGnAJOCCwB1UtRzny9wbIjIV5/12PE5dMRhX4rTWfx2wfiJwu4jcoKq7RKQI5737rt8+RwY8\nZj4wtJkvXSZCWZemd5yGU7T/i6ou97stA57F6cas6057Hqdb7i7gTVXd6fc8f8L5EP6POHPF+rg/\n7xORo5qJYQVwloiMdbuCnsTpBhKo/2D6C3CviEwRkQEich9wGPt/c74VuFpEbhGRoSIyUETOEpEn\naF4nEckMuHVyt72EU8N7UUSGi8iROC2HPQHP8T5wlYgcKc7o1GeB+m4yVV2NMwL2cRH5qYjkub/z\n1e4uq9zf5zoRyRWRs4DbA46xHqeuM0WceWeBSbfO/cAPxRlJO0CcUaV3Ag+rarW7jxBcyzVcDvrv\nqaqzcRL733EGiLzuv11ErheRC0RkiNvSuxynprjS3X62iHwnItkNPb87evJHwAsB/zfLgaeAROB8\nd/eHgf9zj9dfRP4Pp2VZ6/eUdwBnijMK9XD3vTFJRP4mIvFBvl7GoyzheccVwBeqWtDAtg9xRsld\nDqCqS4HFOPWt5/13VGeY+lE43XD/xmmJvYjTJVfkv2sDx7kW54P8Q5yksRF4NWDfG3FG+b0EfAl0\nwkko9a1JVX0RZzTi6e4+X+F8yDf0uwX6kxun/+1593n34NQUu7rP+QLwCE6Lzt91wDfATJxWwhwC\n6pXAz3CTN7Ac57Xq4x7na+BXwP/DaaH9GqdbrP51UNVi4GbgJjfGug9yDdjvHZxpJpcAS914HwPu\n9ouloYnzLZlM39i+geuDPU7g73Aof0+Av+K0wp/zS/J1duG8vp8BXwNnAj/0q0mn4YwGbqw36hKc\nhPWfwA1ul+g7fD8f8Pc4769HcVr543CSoP97dw7OSM3hOLXWJTh/s1IO7Po1EUZUQ3+CChHpifOh\nlYHzj/Skqv7B/Xb2T5yBAOtwhtvvdB9zM84HRQ3OMOVGBxiY8BJnDlqJqp4b7liMaQlxzkgzTFUD\nu6xNO9RWNbwq4FpVXSwiycACEZmF8y17lqo+ICI34nxbvsntTjsfp+7SA3hfRAaoam1jBzBtw+0i\nHI0zFSEWp5Z4Ik59xhjPEpEs4BycHowanIFgF+HMuTMdQJt0aarqZlVd7N7fDXyLk8jOwBkJh/vz\nLPf+mcDL6pxRYh3OYIlxbRGraZYCV+F0a32Gk+zOsha4iQA1OPW+T3C6NC8ErlLVJ5t8lGk32nyU\npjinZRqJUwvo7tZCwBnyWzfvKJv958cU4DfqzoSPO4imucEvxniOW98+KdxxmPBp00Erbnfmazhn\n/Nhvjo06xcSmCoqhLzYaY4xpt9qsheeePeE1nOHDb7iri0UkU1U3u/3rdaPtCnFGFdbJoYEJrmec\ncYZWVlaSmZkJQFJSEv369ePwww8HYPHixQC2bMttvlx33yvx2HLHXl68eDEzZ84EIDMzk6SkJP78\n5z97eSpMSLTVKE3BqdGVqOq1fusfcNdNF5GbcE7AWzdo5SWcul0PnCHy/TQg2IsvvlgfffTRkMdv\nTEtNmzaNm266KdxhGNOga665hueff77DJby2auEdg1Mg/lqcy9GAM4dpGvCKiFyOOy0BQFWXi8gr\nOPOjqoFfBCY7gM2bN7dB6Ma03IYNG8IdgjEmQJskPFWdS+P1wgmNPGYqzqVnjDHGmEMW0WdaOfXU\nU8MdgjENuuCCA04ZaYxnjBgxItwhhEVEJ7y64qwxXnPssceGOwRjGtVRPzsjOuEtXryYBQWl4Q7D\nmAPMnTs33CEYYwJEdMIDuGPWWuZttKRnjDGmaRGd8A4//HCqapS7Zq3lq40tvei1MaFjXZrGeE9E\nJzyAMwd3o6pWuXtWPp+vt6RnjDGmYRGd8BYvXswvjsrh7CHpVNUq98zO59N1O8MdljFWwzPGgyI6\n4QGICFcd2YMfDk2nula5d3Y+n+Rb0jPGGLO/iE54dUNrRYQrj+jBecMzqFG474N8Plq7I8zRmY7M\nanjGeE9EJzx/IsLlY7P5yYju1Crc/+E6PlyzPdxhGWOM8YiITnj+Z6QHJ+ldOiaLC0dmUqswfc56\n3l9lSc+0PavhGeM9EZ3wGiIiXDw6i4tHOUnvwY/W897KknCHZYwxJswiOuE1dXqcC0dlcenoLBR4\n+OMNvLvCkp5pO1bDM8Z7IjrhNeeCkZlcPjYbBR75ZANvf7ct3CEZY4wJk4hOeIE1vIacP6I7V47L\nBuDRuRt5c/nWUIdljNXwjPGgiE54wfrR8O5cdWQPAP74WQFvLLOkZ4wxHU1EJ7yWXOLinKEZ/PKo\nHAAe/7yA15ZuCVVYxlgNzxgPiuiE11JnDknnV0c7Se8vXxbyr6+LwxyRMcaYthLRCS+YGl6gHwxO\n5/+O7QnAX78q4p9LLOmZ1mc1PGO8J6IT3sGaPKgbvz6uFwI8Na+IlxZtDndIxhhjQiyiE96hXKZ+\n0sCu/OZ4J+k9u2ATLyzc1HqBmQ7PanjGeE90uAMIp4kDuuIT4aGP1/PCws3UKlw8KhMRCXdoxhhj\nWllEt/AOpoYXaEL/Ltx4Yh98An9ftJln529CVVshOtORWQ3PGO+J6ITXWk7K68wtJzlJ7+UlxTw1\nr8iSnjHGtDMRnfAOpYYX6Pi+nbn15FyiBF75egtPflloSc8cNKvhGeM9EZ3wWttxuZ24fUIu0T7h\ntW+28sQXlvSMMaa9iOiE1xo1vEBH9+7EHRNyifEJry/bymOfF1jSMy1mNTxjvCeiE16oHNkrjTtP\nySUmSvjv8m388dMCai3pGWNMRIvohNeaNbxA43qmcfcpfYmJEt76bhuPzt1oSc8EzWp4xnhPRCe8\nUBuTk8o9E/sSGyW8s6KE332ygZpaS3rGGBOJIjrhhaKGF2hUj1TuOTWPuGgfM1du52FLeiYIVsMz\nxnsiOuG1lZHZKdx3al/io328v2o7D3y03pKeMcZEmIhOeKGs4QUanpXCfZPySIjx8eGaHUybs86S\nnmmU1fCM8Z6ITnhtbVhmMlMn5ZEY4+OjtTuZ+uE6qi3pGWNMRIjohNcWNbxAQ7onc/9p/UiM8fFJ\n/k7um51PVU1tm8dhvM1qeMZ4T0QnvHA5LCOJ6ZP7kRwbxafrd3Hv7HXss6RnjDGeFtEJry1reIEG\npicxbXI/UuKi+HzDLu55P5991Zb0jMNqeMZ4T0QnvHAb0C2RByb3IzUuii83lnLX+2st6RljjEdF\ndMILRw0vUF7XRB6Y3J+0+GjmF5Rx56y17LWk1+FZDc8Y74nohOcVfbsm8MDkfqTFR7OgsIw73ltD\npSU9Y4zxlIhOeOGs4QXK7ZLAQ1P60TkhmkVFu7l95hr2VNWEOywTJlbDM8Z7IjrheU3vzgk8OKU/\nXRKjWbJpN7da0jPGGM+I6ITnhRpeoF6d4nl4Sn+6JcbwzeZybnl3DRX7LOl1NFbDM8Z7IjrheVWP\ntHgeOr0/6UkxLCt2kl65JT1jjAmriE54XqrhBcpOjeOhKf3JSI5h+ZZybnpnNbv3Voc7LNNGrIZn\njPcEnfBEZJCInC8il7m3y0XkslAGF+my3KTXPTmWFVsruOmdNZRZ0jPGmLAIKuGJyC3AYuDXwEXu\n7UL3Z9h4sYYXKDMljodP709WSiwrt1Vw44zVlFZa0mvvrIZnjPcE28K7Fhinqkeo6kn+t2APJCJP\ni0ixiCz1W3eXiBSIyCL3dprftptFZJWIfCciE4P/lbwnIzmWh07vT3ZqHKtL9nDDjNXssqRnjDFt\nKtiEVwGsOMRjPQNMClinwCOqOtK9vQMgIoOB84HB7mMeF5EDYvVyDS9QelIsD0/pT05aHGu37+GG\nt1exY09VuMMyIWI1PGO8J9iEdzvwBxHJFhGf/y3YA6nqJ8COBjZJA+vOBF5W1SpVXQesBsYFeyyv\n6poUw4NT+tMzLY78HZXc8PZqdlRY0jPGmLYQbMJ6FrgCKACq/W6t8Wn9KxFZIiJPiUgnd122e6w6\nBUCPwAdGQg0vUNfEGB6a0p/eneJZv7OS695eRYklvXbHanjGeE90kPv1DdHx/wz81r1/D/AwcHkj\n+x5wafGPPvqI+fPn06tXLwDS0tIYNmxYfXdS3YeOF5cfmNKPy373CsvW7ON64IHJ/fhu0Veeic+W\nbdmW28/y3LlzeemllwDo1asXGRkZjB8/no5GVA/II43v7HRhdgeKVbXFZ0cWkT7Am6o6rKltInIT\ngKpOc7e9C9ypql/6P2b27Nk6atSolobhGbsqq7lxxmrWbt9DdmocD07pR3pSbLjDMsa0cwsXLmT8\n+PENlZPatWCnJaSKyPNAJVAIVIrI8yKSdigHF5Esv8WzgboRnP8FfiwisSKSC/QHvjqUY3lRWnw0\nD0zuR7+uCRSV7uW6t1axZfe+cIdljDHtUrA1vD8CScBQINHv5x+DPZCIvAx8BgwUkY3upPXpIvK1\niCwBTsCZ/oCqLgdeAZYD7wC/0AaaopFYwwuUGh/N9Mn9GNAtkU1l+/jNW6vYXLY33GGZQ2Q1PGO8\nJ9ga3iSgr6qWu8srReRSYG2wB1LVnzSw+ukm9p8KTA32+SNZSlw0007L4+Z317BiawXXvb2KByf3\nJys1LtyhGWNMuxFsC28PkB6wrhtOF2fYRNI8vOYkx0Uz7bR+HJaRyJbdVVz39ioKd1lLL1LZPDxj\nvCfYhPc3YJaIXCUip4nIz4H3gL+GLrSOJyk2iqmT+jGkexJby6u4/u1VFOwK63cKY4xpN4JNePcB\n9wPn4kwd+CEwHbg3RHEFpT3U8AI5SS+PYZnJbKtwWnobdlrSizRWwzPGe4JKeOp4WlXHq+pgVZ2g\nqk81NJDEHLqEmCjuPbUvI7KS2V5RzfVvr2L9jj3hDssYYyJao/PwROQiVX3BvX85DUz8BlDVRgee\nhFqkz8NrTmV1LXe+t4ZFRbvp5I7mzO2SEO6wjDERzubhHch/VOVFTdxMiMRH+/jtxDxG90hhZ2U1\nN8xYzdoSa+kZY8zBaDThqepkv/snBl4WqKWXBwqF9ljDCxQX7ePuU/oyJieFXZXVXD9jFWtKKsId\nlmmG1fCM8Z5gz7SyqJH181s3HNOQ2Ggfd53SlyN6plK2t4YbZqxm1TZLesYY0xLBjtLsF7hCRITQ\nnVQ6KO1pHl5zYqN83D4hl6N6pVG2t4YbZ6xmxdby5h9owsLm4RnjPU0mPBF5QUReAOLcc2e+4Lfu\nY2BZm0RpACfp3Ta+D8f0TmP3PifpfbvFkp4xxgSjuRbeGvemfvfX4FyQ9UWcC7WGTUeo4QWKifJx\n6/hcjsvtREVVLTe/s5plxbvDHZYJYDU8Y7ynyXNpqupdACLyhaq+2yYRmWZF+4RbTurDdFnHnLU7\nueXdNdx3ah5DM5PDHZoxxnhWsBPP33Uv1TNMRE4SkZPrbqEOsCkdqYYXKMon3HhiH07O68yeqlpu\neXcNX28qC3dYxmU1PGO8J9hRmscC64GPgPeBV3HOpfm30IVmmhPlE64/oTcT+nehsrqWW99dw6Ii\nS3rGGNOQYEdp/h54UFW7AKXuz98Cfw5ZZEHoiDW8QFE+4TfH9eLUAV3YW6PcPnMNCwtLwx1Wh2c1\nPGO8J9iE1x8n6QHUnY5mGu4FW014RfmEa4/rxWkDu7KvRrnjvbXML7CkZ4wx/oJNeLuANPd+kYgM\nATrjXAU9bDpyDS+QT4Rrju3J6YO6sa9GuXPWWr7auCvcYXVYVsMzxnuCTXivA3WnGnsa+ABYiFPL\nMx7hE+FXx+RwxuBuVNUod8/K5/P1lvSMMQaCH6V5jar+3b3/EPAj4H+AK0IYW7OshncgEeGXR+Vw\n9pB0qmqVe2bn89n6neEOq8OxGp4x3hPsKM0eItKlbllVPwG+BDJDFZg5eCLCVUf24IdD06muVe55\nP5+5+Zb0jDEdW7Bdmv8BegSsy8Hp6gwbq+E1TkS48ogenDc8gxqFez/I5+O1O8IdVodhNTxjvCfY\nhDdAVZcGrFsKHNbK8ZhWJCJcPjabn4zoTq3C1A/X8eGa7eEOyxhjwiLYhLdFRPoHrMsDtrVyPC1i\nNbzmiQiXjsnipyMzqVWYPmc976+ypBdqVsMzxnuCTXhPA6+JyA9EZLCInAG8BjwVutBMaxERLhmd\nxcWjnKT34EfreW9lSbjDMsaYNtXkyaP9TAeqgIdwancbcU4r9kiI4gqK1fBa5sJRWfhEeHbBJh7+\neAO1CpMGdg13WO2S1fCM8Z6gEp6q1gAPujcTwS4YmUmUT3hqXhGPfLKBGlWmDOoW7rCMMSbkgkp4\nIjIe55p4B1DVD1o1ohZYvHgxo0aNCtfhI9b5I7rjE/jrV0U8OncjtbXKDwanhzusdmXu3LnWyjPG\nY4Lt0nyK/RNeOhCH07XZt7WDMqF37vDuRPmEJ74o5I+fFVCrcOYQS3rGmPYr2C7NPv7LIhIF3AaE\n9VLbVsM7NOcMzSBKhMc+L+CxzwuoUeWcoRnhDqtdsNadMd4T7CjN/bg1vanADa0bjmlrZw5J51dH\n5wDwxBeFvPp1cZgjMsaY0DiohOc6BahprUAOhs3Dax0/GJzONcf2BODJr4r45xJLeofK5uEZ4z3B\nDlrZGLAqEYgHftHqEZmwmDKoG1Ei/O6TDTw1r4haVX5yuJ0q1RjTfgQ7aOWigOVyYKWqhvXaM1bD\na12TBnbFJ/Dwxxt4Zv4mamqVC0dlhTusiGQ1PGO8J9hBK3NCHIfxiIkDuuIT4aGP1/P8ws3UKFw8\nKhMRaf7BxhjjYY0mPBF5IWBV3bQE8buPql4cgriCYvPwQmNC/y5E+Zzzbv590WZqa5VLx2RZ0msB\nm4dnjPc0NWhlDbDave0EzgKicObeRQFnuutNO3RSXhduPqkPPoGXlxTz9LwiVBs894AxxkSERlt4\nqnpX3X0ReQ+Y4l74tW7dscAdIY2uGVbDC60T+nbGJ8LUD/L559dbqFG4Yly2tfSCYK07Y7wn2GkJ\nRwJfBKz7EjiqdcMxXnNcbiduG59LtE94dekWnvii0Fp6xpiIFGzCWwTcLyIJACKSiDPxfFGoAguG\nzcNrG8f06cTt43OJ8QmvL9vKY58XWNJrhs3DM8Z7gk14lwLHAKUisgXYBRwLXBKiuIzHHNU7jTtP\nySUmSvjv8m388dMCai3pGWMiSFAJT1XzVfUonKucnwH0U9WjVDU/pNE1w2p4bWtczzTuPqUvMVHC\nW99tc660YEmvQVbDM8Z7mkx4InJEwKqtqvqFqq53t58dssiMJ43JSeWeiX2JjRLeWVHC7z7ZQE2t\nJT1jjPc118J7P2C5MGD5+VaMpcWshhceo3qkcs+pecRFCTNXbudhS3oHsBqeMd7T0pNH23h0A8DI\n7BTum5RHfLSP91dt58GP1lvSM8Z42qFcLSHsrIYXXsOznKSXEOPjgzU7mD5nnSU9l9XwjPGeiE54\nJvyGZSYzdVIeiTE+5qzdyf0frqPakp4xxoOaS3hJIrKx7gakBiwntkGMjbIanjcM6Z7M/af1IzHG\nx8f5O7lvdj5VNbXhDiusrIZnjPc0d7WEk5vZHvRXeRF5GpgCbFHVYe66LsA/gd7AOuA8Vd3pbrsZ\nuAznIrNXq+p7wR7LtL3DMpKYPrkfN7+zhk/X7+LeD9Zx28l9iImyTgRjjDdIW50xQ0SOA3YDz/sl\nvAeAbar6gIjcCHRW1ZtEZDDwEjAW6IEzWnSAqu7XbJg9e7ba1RK8ZeW2Cm5+ZzVle2s4omcqt0/I\nJdaSnjGesnDhQsaPH9/hBiG22SeRe+LpHQGrzwCec+8/h3NFBnCuxPCyqlap6jqcKzaMa4s4zaEZ\n0C2RByb3IzUuii83lnL3rHz2VXfs7k1jjDeE+6t3d1Utdu8XA93d+9lAgd9+BTgtvf1YDc+b8rom\n8sDk/qTFRzOvoJQ7Z61lbwdLelbDM8Z7grrieVtQVRWRpvpXD9j20UcfMX/+fHr16gVAWloaw4YN\nqx8SXvehY8ttv9y3awLnddnCX74sZAHDuOO9NZyatInYKJ8n4rNlW+5Iy3PnzuWll14CoFevXmRk\nZDB+/Hg6mkZreCJSpKrZ7v2nVfWyQz6YSB/gTb8a3nfAiaq6WUSygA9VdZCI3ASgqtPc/d4F7lTV\nL/2fz2p43rd+xx5umLGaHXuqGZGVzG8n9iUhJircYRnToVkN70AxItLVvX9uiI7/X76/4sIlwBt+\n638sIrEikgv0B74KUQwmhHp3TuDBKf3pkhjNkk27uW3mWvZU1YQ7LGNMB9RUwvsLUD/fzn/+nd9t\nQ7AHEpGXgc+Age5jfwZMA04RkZU4UyCmAajqcuAVYDnwDvALbaApajW8yNCrUzwPTelP18QYlm7e\nzS3vrqFiX/tOelbDM8Z7Gq3hqeptIvIk0At4D7iQQziXpqr+pJFNExrZfyrORWZNO5CT5iS962es\nYllxObe8u4b7JuWRFGvdm8aYthHUPDwRmaCqgVdOCDur4UWeTaV7uX7GKrbsrmJQeiJTJ+WRHOeZ\nsVPGdAiYbwb2AAAdJklEQVRWw2vabBG5TEQ+FJGVIvKBu9zhXjBzaLJS43hoSn+6J8fy3dYKbnpn\nDWV7q8MdljGmAwg24d0C3Ai8DFwN/AO4Hrg1RHEFxWp4kSkzJY6HT+9PVkosK7dVcOOM1ZRWtq+k\nZzU8Y7wn2IR3BTBRVZ9U1XdV9UlgEnBl6EIz7VlGciwPTulPdmocq0ucqQu72lnSM8Z4S7AJLxHY\nFrCuBIhv3XBaxq6HF9kykmN5aEo/ctLiWLt9Dze8vYqde6rCHVarsOvhGeM9wSa8d4EXRWSQiCSI\nyGHA88DM0IVmOoJuSU5Lr2daHPk7Krl+xmp2VLSPpGeM8ZZgE96vgDJgCVAOLHZ//ipEcQXFanjt\nQ9fEGB6a0p/eneJZv6OS695eRUmEJz2r4RnjPUElPFXdpaoX43RtZgGJqnpR3bXrjDlUnRNjeGBK\nP/p0jmfjrr1c//YqSsojO+kZY7ylRVdLUNUaVS1WVU+cJsNqeO1L54QYHpzSn75dEijYtZfr3l7F\n1vJ94Q7roFgNzxjvCfflgYzZT1p8NA9M7ke/rgkUlu7lurdWsWV3ZCY9Y4y3RHTCsxpe+5QaH830\nyf0Y0C2RTWX7+M1bq9hctjfcYbWI1fCM8Z6ITnim/UqJi2baaXkMTE+kePc+rnt7FZsiLOkZY7wl\nqIQnIieLSF/3fpaIPC8iz4hIZmjDa5rV8Nq35Lhopp3Wj8MyEtmyu4rr3lpFUWlkJD2r4RnjPcG2\n8B4H6k6D8QjOVRYUeDIUQRlTJyk2iqmT+jGkexJby52kV7irMtxhGWMiULAJL1tVN4hIDHAq8P+A\nq4BjQhZZEKyG1zE4SS+PYZnJbKuo4jdvr2LjTm8nPavhGeM9wSa8Urf78nhgmaqW4VwbLyZkkRnj\nJyEmintP7cuIrGS2V1Rz3dur2LDD20nPGOMtwSa8PwJfAS/hdG+C07r7NhRBBctqeB1LQkwU95ya\nx8jsZHbscZLeuh17wh1Wg6yGZ4z3BHumlenAKcDRqvqyu7oA+J9QBWZMQ+Kjffx2Yh6je6Sws7Ka\n699ezdoSbyY9Y4y3tGRawlqgh4ic7y4XAfmtH1LwrIbXMcVF+7j7lL6MyUlhV2U1N8xYxZqSinCH\ntR+r4RnjPcFOSxgGrMQZlfmUu/oEv/vGtKnYaB93ndKXI3qmUrq3hhtmrGbVNm8lPWOMtwTbwnsC\nuFNVBwF1Z/SdAxwXiqCCZTW8ji02ysftE3I5qlcaZXtruHHGalZsLQ93WIDV8IzxomAT3mDghYB1\nFUBC64ZjTMvERvm4bXwfjumdxu59Ndz0zhq+3eKNpGeM8ZZgE956YEzAurHAqtYNp2WshmcAYqJ8\n3Do+l+NyO1G+r4ab31nNsuLdYY3JanjGeE+wCe824C0R+S0QKyK3AK8Ct4csMmNaINon3HJSH07o\n24mKqlpueXcN32wOb9IzxnhLsNMS3gImAenAR0Av4GxVnRnC2JplNTzjL8on3HRiH07K68weN+l9\nvSk8Sc9qeMZ4T7CjNM9V1UWq+nNVnayqV6nqAhH5UagDNKYlonzCDSf0ZkK/zlRW13LrzDUsLioL\nd1jGGA8Itkvz6UbW/7W1AjkYVsMzDYnyCb85vjenDujC3upabp+5hoWFpW0ag9XwjPGeJhOeiPQV\nkTznrvQNuJ0C2CkujCdF+YRrj+vFaQO7srdGueO9tcwvaNukZ4zxluhmtq9u5D5AMXBXq0bTQlbD\nM03xiXDNsT3xCbz9XQl3zlrLnRNyGdczLeTHthqeMd7TZAtPVX2q6gPm1t33u2Wp6l/aKE5jDopP\nhKuP6ckZg7tRVaPcPSufLzbsCndYxpgwCHaU5vGhDuRgWA3PBENE+OVROZw9JJ2qWuW37+fz2fqd\nIT2m1fCM8Z7mujQBEJFPGtmkXk2GxvgTEa46sgc+gde+2co97+dz68m5HJvbKdyhGWPaSFAJjwNP\nEp0JXA682LrhtIzV8ExLiAhXHtEDnwj/WrqFez/I55aT+nB8386tfiyr4RnjPUElPFV9NnCdiLwK\nPAPc3coxGRMyIsL/jMsmyif8Y0kxUz9cR43CSXmtn/SMMd7SkuvhBSoERrRWIAfDanjmYIgIPxuT\nxU9HZlKrMH3OOmav3t6qx7AanjHeE2wN73JA/VYlAecAn4ciKGNCTUS4ZHQWUQLPL9zMA3PWU1Or\nTBzQNdyhGWNCJNga3kXsn/DKgU+B37V6RC1gNTxzqC4clYVPhGcXbOLhjzdQqzBp4KEnPavhGeM9\nwdbwTgxxHMaEzQUjM/H54Ol5m3jkkw3UqjJ5ULdwh2WMaWVB1/BEJE1ExonIyf63UAbXHKvhmdby\n4xGZXDEuG4Dfz93IW99uO6TnsxqeMd4TbA3vUuAxYDfOlc795bZyTMaExbnDuxPlE574opA/fLqR\nmlrlzCHp4Q7LGNNKgq3hTQV+pKrvhDKYlrIanmlt5wzNwCfC458X8NjnBdSqcvbQjBY/j9XwjPGe\nYLs0o4D3QhmIMV5x1pB0/vfoHAD+/EUhry7dEuaIjDGtIdiENx24XUQOZd5eq7MangmVMwanc82x\nPQF48stCXllS3KLHWw3PGO8Jtkvz10B34AYRKfFbr6raq/XDMib8pgzqRpQIv/tkA3+bV0SNKj85\nPDPcYRljDlKwCe/CkEZxkKyGZ0Jt0sCu+AQe/ngDz8zfRE2tcuGorGYfZzU8Y7wn2Hl4c0IchzGe\nNXFAV3wiPPTxep5fuJlahYtGZSIi4Q7NGNMCjSY8EblNVe9179+Dc6aVuv/wuvuqqneEPMpGLF68\nmFGjRoXr8KYDmdC/C1E+mD5nPS8u2kyNKpeOzmo06c2dO9daecZ4TFMtvB5+93uy/6nFwE14rRGE\niKwDSoEaoEpVx4lIF+CfQG9gHXCeqob2qp3GNOGkvC74RLj/w3W8vLiY2lrlsrHZ1tIzJkI0mvBU\n9ed+9y8NcRwKnKiq/qesvwmYpaoPiMiN7vJN/g+yGp5payf07YxPhKkf5PPPr7dQo3DFuAOTnrXu\njPGeJqcZiEiv5m6tGEvg1+QzgOfc+88BZ7XisYw5aMflduK28blE+4RXl27hiS8LUW2Vzg5jTAg1\nN69uHZDv/mzolt9KcSjwvojMF5Er3HXdVbVu8lMxzrSI/dg8PBMux/TpxO3jc4nxCa9/s5XHPy/Y\nL+nZPDxjvKe5UZpLgATgeeBFnIu+hqJgcYyqbhKRdGCWiHznv1FVVUQO+Ar90UcfMX/+fHr1chqa\naWlpDBs2rL47qe5Dx5ZtORTLNRuXclanct7Y1Z3/LN/G6q/ncfaQdI4/7jhPxGfLtly3PHfuXF56\n6SUAevXqRUZGBuPHj6ejkea6YkRkGHAJcD6wHCf5/VtV94QkIJE7cU5SfQVOXW+ziGQBH6rqIP99\nZ8+erTZK04Tb/IJS7py1lqoa5bSBXbnm2J74bCCL8bCFCxcyfvz4DvcmbfZUYaq6VFWvA/rgXPD1\ndGCTiLRKphGRRBFJce8nAROBpcB/cRIt7s83WuN4xrS2MTmp/PaUvsRGCe+sKOF37jX1jDHe0pJz\nY/YHjgeOBhYBrTVFoDvwiYgsBr4E3lLV94BpwCkishI42V3ej9XwjFeMzknlnlPziIsSZq7czi//\n9BprSipsMIsxHtJkDU9EugI/AS4GUoEXgONUdUNrBaCq+cAB8wvcKQoTWus4xoTayOwU7puUx20z\n17KoqIyfv76CLonRjOmRypicVEb1SCE1Ptiz+RljWluTNTwR2QusxRmw8oW7er8HqOoHIYuuGVbD\nM160elsF/1m+lfkFZZRUVNWv9wkMTE9kbI6TAPt3SyTK1+HKKMYDOmoNr7mEt45mzqaiqmG74rkl\nPONlqsq6HZXMKyhlfkEp32wup7r2+3+n1LgoRuekMiYnhdE9UumSGBPGaE1H0lETXpP9K6rap43i\nOCh2Lk3jVXXn0sztkkBulwTOG96dPVU1LC7azfyCUuYVlLK5bB8frtnBh2t2ANCvawJj3Nbf4O5J\nRFvrz5hWZQUFY9pIQkwUR/VO46jeaagqhaV7mbexlPkFZSzZVMbqkj2sLtnDP5YUkxjjY2R2CmN6\npjI2J5WM5Nhwh29MxGt2Hp6XWZemaS/2VteydLPT+ptfUMaGnZX7be/dKZ4xOSmMyUllWGYysdEt\nGWBtzP6sS9MYEzZx0b767kyA4rJ9zC8sZf7GUhYVlbF+ZyXrd1by2jdbiYsSRmQ7yW9sTgrZqXF2\nxQZjghDRCc9qeMarDvV6eN1TYpkyqBtTBnWjulZZXlxeX/tbU7KHrzaW8tXGUgCyUmLrk+Xh2ckk\nxES11q9hTLsS0QnPmI4g2icMz0pmeFYyl43NpqSiigXuyM8FhWVsKtvHm99u481vtxHtE4ZmJrmt\nv1T6dI631p8xLqvhGRPBamqVldsq3NpfKd9tqdhvHlHXxBjG5KQwNieVkT1SSImz77jGanjGmAgU\n5RMOy0jisIwkLhqVRWllNQsLy+oTYElFFTNXbmfmyu34BAalJzHWHfnZr1uCneTadCgRnfCshme8\n6lBreAcrNT6aE/M6c2JeZ1SVtdv3ML+gzJ34vpvlW8pZvqWc5xZsIi0+mtE9nMEvo3NS6JxgE99N\n+xbRCc8Y0zgRIa9rInldEzl/RHfK99WwuKisfupD8e59fLBmBx+4E9/7d0uor/0dlpFkpz0z7Y7V\n8IzpgFSVjbv21nd9Ltm0m6qa7z8LkmKjGJmdwtgcZ/J7epJNfG9PrIZnjOkwRIReneLp1Smec4Zm\nUFldy9JN35/2rGDXXuau28ncdc5VwPp0jq9v/Q3JTCI2yia+m8gT0QnPanjGq8JVwztY8dE+ZzBL\nz1R+Dmwq28uCgjLmFZSyuKiMdTsqWbejkleXbiEu2sfhWcmM7enM/ctOjQt3+MYEJaITnjEmNLJS\n4jj9sDhOP6wbVTW1+018X7u9ki83lvKlO/E9OzXO6frMSWV4lk18N95lNTxjTIuUlFfVn/ZsYVEZ\nZXtr6rfF+IShmcn1tb/enWziuxdZDc8YY4LQNSmGUwd05dQBXampVVZsrahv/a3cWsGiojIWFZXx\n5FdFdEuKqb/g7cjsZJJt4rsJo4h+91kNz3hVpNXwDlaUTxjcPYnB3ZO4eHQWuyqrWVhYyryCMuZv\nLGVbeRXvrCjhnRUl+AQGZyTV1/7yutrEd9O2IjrhGWO8JS0+mpPyunBSXhdqVVlbsse94nsZy4p3\n801xOd8Ul/PM/E10io+uv+TRqB4pdLKJ7ybErIZnjGkT5ftqWFRY5ibAUraWV9VvE2BAeqJ71YcU\nBqXbxPdQshqeMcaEUFJsFMfmduLY3E6oKht2VjpdnwWlLN20mxVbK1ixtYK/L9pMcmwUo9zTno3J\nSaGbTXw3rSCiE57V8IxXdZQa3sESEXp3TqB35wR+NCyDPVU1LN28m3kbnQRYWLqXj/N38nG+M/E9\nt27ie89UhnRPIsYmvpuDENEJzxjTPiTERDGuZxrjeqYBUFT6/WnPFhXtJn9HJfk7KvnX0i3ER/sY\nmZ3i1P96ppKVYhPfTXCshmeM8bR9NbUsKy5n/kYnAebvqNxve05aXH3X5/CsFOKjrfXXHKvhGWOM\nB8VGOS26kdkpXHFED7aW76u/5NHCwjIKdu2lYNdW3li2lZgoYXhmcv15P3t2irOJ76ZeRCc8q+EZ\nr7IaXuikJ8Vy2sCunDbQmfj+3Zby+qkPK7dVsKCwjAWFZfzly0IykmPc1l8qI7NTSIq10551ZBGd\n8IwxHVuUTxiSmcyQzGQuHQM79lT5XfG9jC27q5jxXQkzvishSmBI92TG9ExhbE4qfbskWOuvg7Ea\nnjGmXapVZXXJnvra3/It5dT6fdx1SYhmtNv6G90jhdT4jvP932p4xhjTjvhEGNAtkQHdErlgZCa7\n91azqGg389wEuK2iilmrtjNr1XYEGOhOfB/bM5UB3RJt4ns7FNEJz2p4xqushuc9yXHRHJfbiePc\nie/rdlTWT334ZnM5322t4LutFby4aDMpcc7E97E5qYzOSaVrop32rD2I6IRnjDEHQ0TI7ZJAbpcE\nzh3enT1VNSypu+L7xlI2le3jo7U7+WitM/G9b5eE+mv+DbaJ7xHLanjGGBOgcNf3E98XF5Wxt+b7\nz8nEGB+HZ39/2rPMCJz4bjU8Y4wxAPRIi6NHWjpnDklnX3Ut3xTvZn6Bc+Lr9Tsq+Wz9Lj5bvwuA\nnmlxjOnpzPsblplMnE1896yITnhWwzNeZTW89iM22seoHqmM6pHKlUf0YMvuffWtv4WFZWzctZeN\nu7by+jdbiY0Shmcl11/0NifNJr57SUQnPGOMaWsZybFMHtSNyYO6UV2rfLvFOe3ZvIJSZxpEQRnz\nC8qAQronxzrJr2cKh2elkGgT38PKanjGGNNKdlRUscC95t+CglJK99bUb4v2CUO6J9W3/nK7xIet\n9Wc1PGOMMYekc2IME/p3YUL/LtTUKqtLKpxr/m0s5but5SzZtJslm3bzt3lFdEmMrk9+I7M71sT3\ncInoV9hqeMarrIZnonzCwPQkBqYnceHITEorq1lU5Jz2bF5BKdsrqpm5cjszV27HJzAoPcm55FFO\nKv1t4ntIRHTCM8aYSJEaH80JfTtzQt/OqCr52yvrk9+y4nKWb3Fuzy/cTGpclHvasxTG9Eils018\nbxVWwzPGmDCr2OdMfJ/nTnwv3r1vv+39uibUX/VhcPckog+x9Wc1PGOMMWGRGBvFUb3TOKp3GqpK\nYele95yfZSzZVMbqkj2sLtnDP5YUkxjjY1SPlPoEmJEcG+7wI0ZEJzyr4RmvshqeOVgiQk5aPDlp\n8Zw9NIO91bUs3by7/pJHG3ZWMnfdLuaucya+9+4UX1/7G5aZTKxNfG9URCc8Y4xp7+KiffWtOYDN\nZXvrr/i+qKiM9TsrWb+zkte+2UpclDDCPe3Z2JwUslNt4rs/q+EZY0yEqqqp5dst5c7Uh4JS1pTs\n2W97VkpsfbI8PDuZhBhn4ntHreFZwjPGmHaipKKKBe5pzxYUllHmN/E9xicMzUxiTE4qedWFHTLh\nebqzV0Qmich3IrJKRG4M3L548eJwhGVMs+bOnRvuEEwH1DUxhokDunLLybm88tNhPHrGAC4alcmg\n9ESqa5VFRbv561dF4Q4zbDxbwxORKOBPwASgEJgnIv9V1W/r9lm9enW4wjOmSUuXLrVBKyasonzC\nYRlJHJaRxEWjsiitrGZBodP1uXjxbMaPHx/uENucl1t444DVqrpOVauAfwBn+u9QXl4elsCMac6u\nXbvCHYIx+0mNj+akvM5cf0JvlixZEu5wwsLLCa8HsNFvucBdZ4wxxrSYlxNes6NpNm/e3BZxGNNi\nGzZsCHcIxpgAnq3h4dTtevot98Rp5dXLy8vjmmuuqV8eMWIEhx9+eNtEZ0wTxowZw8KFC8MdhjGA\nM8DPvxszKSkpjNGEj2enJYhINLACGA8UAV8BP/EftGKMMcYEy7MtPFWtFpH/BWYCUcBTluyMMcYc\nLM+28IwxxpjW5OVBK80Ska4issi9bRKRAvf+QrdL1JiwaIv3poikicjP/ZazReRfrfHcpv0TkRwR\n+Y+IrBSR1SLyexFp1QvvNfN/0F9EljbyuLtFpMGJgiJyiYhkHVQ87aWFJyJ3AmWq+ki4YzHGX6je\nmyLSB3hTVYe15vOa9k+cM0p/CTymqs+JiA94Etiuqjcc4nNHq2p1A+v3+z84mPeve0KS94HrVHVB\nS2OL6BZeA0RERovIHBGZLyLvikimuyFPRN5x138sIgPd9c+KyKMi8qmIrBGRH7rrs9z9FonIUhGx\n02aYQxElIvMBRGSEiNSKSI67vEZE4kUkXUReFZGv3NvR7va7RORpEfnQ3fdX7nNOA/Lc9+h0Eekt\nIt+4j4kSkQfd51kiIle66+19bQBOBvao6nMAqloLXAtcJiIJIvKFiAyu29n9TB0lIknue/FLt5V2\nhrv9UhH5r4jMBmY1cdzA83dGiciTIvKNiMwUkXj3+Z71+yxeJyLTRGQB8GNgDPB39z08WURe94vz\nFBH5d2MHb3cJD/gD8CNVHQM8A9znbnsS+JW7/nrgcb/HZarqMcDpOB8iABcA76rqSGA4YCfuNIei\nFogTkRTgOGAecLyI9AaKVbUSeBT4naqOA34E/M3v8QOAiThnILrT/aZ7I7BGVUeq6o047/+6LpvL\ngZ3uc40DrnC/Uf8Ee18bGALs10JS1TJgA9AP58xW54HzJQnnM3IhcCswW1WPwEmaD4pIovsUI4Ef\nqupJLYijP/AnVR0K7AR+WBcO37+XFdimqqNV9e/AfOAC930/AxgkIl3dfX8GPNXYwdpbnSsOGArM\nclrsRAFFIpIEHA38S76/NlTdZYIVeANAVb8Vke7u+q+Ap90+7TdUtWOei8e0ps+BY3AS3v3AJJwk\n9bG7fQJwmN97NMV97yrwtnuKvRIR2QJ058Bvy/4mAsNE5EfucirOB9k87H1tmj6xhwKvAO8Bd+Ek\nvrra8ETgByJynbscB/RyHzNLVXe2MI58Vf3avb8A6NPIfv8MWPZ/778AXCQizwJHAhc2drD2lvAE\nWKaqR++3UiQV2OF+q23IvoDnQFU/EZHjcFp9z4rII6r6QiiCNh3Gx8DxOB8Q/wFuwvmgeMvdLsAR\nqur/fqy7gKf/uhqC+9/9X1U9oHvJ3tcGWI7Ti1DP/ZzshXMO40oRKRGRYTgJ7//57XqOqq4KeOwR\nwMGc3Hiv3/0aIKGR/QKf2z9hPwO8CVQCr7jdsw1qb12ae4F0ETkSQERiRGSwqpYC+XXfdsUxvKkn\nEpFewFZV/RtO11JjydKYYH2C8+1zlTqjxbYDk4G6awm9B1xdt7OIjGjm+cqAlEa2zQR+Ie6IUBEZ\nICKJ9r42AKo6G0gUkYugfjDIw8Azbvc6OK2qG4FUVf3GXTeT/d+jde+ftry2XhlOjwUAqroJ5+Qk\nt+Ekv0a1t4RXg/OtZbqILAYWAUe5234KXO6u/wY4w+9x2sD9k4DFIrIQ5xvOo6EM3LR7qqrr3ft1\nXZif4PQ81F1a4WpgjDvIZBn7f6s+oAtKVUuAT93BJ9PZv+7xN5xv8QvFGfr9Z5xW4YnY+9o4zgbO\nFZGVOGe1qgBu8dv+KnA+TvdmnXuAGBH52h0gdbe73v+915TAfZpbbsizwBPuoJk4d91LwAZVXdHU\nA9vNtARjjDEdk4j8CVigqk228CzhGWOMiVjudIUy4BR3YFfj+1rCM8YY0xG0txqeMcYY0yBLeMYY\nYzoES3jGGGM6BEt4xhhjOgRLeMYYYzoES3jGHAT37PHbRSS2+b2NMV5gCc+YFnKvOjAO2ML+Z+wx\nxniYJTxjWu5inItQvgBcUrdSnKs7vykiu9zr0N0rIp/4bR8kIrPck/J+JyLnhiF2YzosS3jGtNzF\nOCfWfQU4VUTS3fWP4ZzxoTtOIrwY99yA7mV+ZgEvAuk4F7J8XEQOa9vQjem4LOEZ0wLuFcJ7AP91\nL5GyHPipe7b5c4A7VbVSVb8FnuP7s8ifjnPtr+dUtVZVFwP/BqyVZ0wbsYRnTMtcArznXh0anAtj\nXgJ0w7kawUa/fQv87vcGjhCRHXU34AKc1qAxpg20twvAGhMyIpKAc0kdn4hsclfHAWk4iasa6AnU\nXRyzp9/DNwAfqerENgrXGBPAWnjGBO8snKR2GDDCvR2GcwHXi3G6KO8SkQQRGQRcxPfX93obGCAi\nF7oXJo4RkbHufsaYNmAJz5jgXQw8raoFqrrFvRUDf8LpnvwlTmtvM0797mVgH4DbBToRZ7BKIbAJ\nuB+weXzGtBG7PJAxIeJehTxDVX8W7liMMdbCM6bViMhAERkujnHAZcDr4Y7LGOOwQSvGtJ4UnG7M\nbKAYeEhV/xvekIwxdaxL0xhjTIdgXZrGGGM6BEt4xhhjOgRLeMYYYzoES3jGGGM6BEt4xhhjOgRL\neMYYYzqE/w8GYpLo8pJamQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "avgs = education_time_by_age()\n",
+ "y = [avgs[0], avgs[1], avgs[2]]\n",
+ "x = range(3)\n",
+ "plt.plot(x,y)\n",
+ "plt.xticks(range(3), [\"Teens\", \"Twenties\", \"Over Thirty\"], ha='left')\n",
+ "plt.xlabel(\"Age\")\n",
+ "plt.ylabel(\"Minutes of Education\")\n",
+ "plt.title(\"Average Education Time Vs. Age\")\n",
+ "plt.style.use('bmh')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Obviously this one makes sense and turned out as expected."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.4.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/atus_analysis/data_analysis.py b/atus_analysis/data_analysis.py
new file mode 100644
index 0000000..eeda48b
--- /dev/null
+++ b/atus_analysis/data_analysis.py
@@ -0,0 +1,104 @@
+import pandas as pd
+import re
+
+summary = pd.read_csv("atusdata/atussum_2013/atussum_2013.dat")
+activity = pd.read_csv("atusdata/atusact_2013/atusact_2013.dat")
+respondent = pd.read_csv("atusdata/atusresp_2013/atusresp_2013.dat")
+summary = summary.rename(columns={'tucaseid':'TUCASEID'})
+
+
+def activity_columns(data, activity_code):
+ col_prefix = "t{}".format(activity_code)
+ return [column for column in data.columns if re.match(col_prefix, column)]
+
+def average_minutes(data, cols):
+ activity_data = data[cols]
+ activity_sums = activity_data.sum(axis=1)
+ data = data[['TUFINLWGT']]
+ data['minutes'] = activity_sums
+ data = data.rename(columns={"TUFINLWGT": "weight"})
+ data['weighted_minutes'] = data.weight * data.minutes
+ return data.weighted_minutes.sum() / data.weight.sum()
+
+def amt_leisure_time_by_age():
+ all_cols = activity_columns(summary, '12')
+ all_cols.extend(activity_columns(summary, '13'))
+ older_ages_crit = summary.TEAGE >= 75
+ old = summary[older_ages_crit]
+ mid = summary[summary.TEAGE.isin([35,36,37,38,39,40,41,42,43,44])]
+ young = summary[summary.TEAGE.isin([25,26,27,28,29,30,31,32,33,34])]
+ old_avg = average_minutes(old, all_cols) / 60
+ mid_avg = average_minutes(mid, all_cols) / 60
+ young_avg = average_minutes(young, all_cols) / 60
+ return old_avg, mid_avg, young_avg
+
+def corr_sports_school():
+ relevant_respondent = respondent[["TUCASEID", "TESCHENR"]]
+ sports_list = ['TUCASEID']
+ sports_list.extend(activity_columns(summary, '1301'))
+ relevant_respondent.index = relevant_respondent.pop("TUCASEID")
+ in_school = relevant_respondent.rename(columns={'TESCHENR':'In_school'})
+ sports_data = summary[sports_list]
+ sports_data.index = sports_data.pop('TUCASEID')
+ summed_exercise = sports_data.sum(axis=1)
+ exercise_frame = summed_exercise.to_frame(name='Exercise')
+ result = pd.merge(exercise_frame, in_school, left_index=True, right_index=True)
+ result['ID'] = result.index
+ result.index = result.pop('In_school')
+ ids = result.pop("ID")
+ return result['Exercise'].groupby(result.index).sum()
+
+def avg_hours_tv_per_month():
+ month_data = respondent[['TUCASEID', 'TUFINLWGT', 'TUMONTH']]
+ month_data = month_data.rename(columns={'TUFINLWGT':'Weight', 'TUMONTH':'Month'})
+ tv_data = summary[['TUCASEID','t120303']]
+ tv_data = tv_data.rename(columns={'t120303':'TV_mins'})
+ data = pd.merge(month_data, tv_data, left_on='TUCASEID', right_on='TUCASEID')
+ return data['TV_mins'].groupby(data['Month']).mean() / 60
+
+def avg_sleep_by_kid_age():
+ kid_data = respondent[['TUCASEID', 'TRHHCHILD','TRYHHCHILD']]
+ sleep_data = summary[['TUCASEID', 'TUFINLWGT', 't010101']]
+ data = pd.merge(kid_data, sleep_data, right_on='TUCASEID', left_on='TUCASEID')
+ yes_kids = data[data['TRHHCHILD'] == 1]
+ no_kids = data[data['TRHHCHILD'] == 2]
+ yes_kids['weighted_mins'] = yes_kids['t010101'] * yes_kids['TUFINLWGT']
+ avg_yes = (yes_kids.weighted_mins.sum() / yes_kids.TUFINLWGT.sum()) / 60
+ no_kids['weighted_mins'] = no_kids['t010101'] * no_kids['TUFINLWGT']
+ avg_no = (no_kids.weighted_mins.sum() / no_kids.TUFINLWGT.sum()) / 60
+
+ young_kids = yes_kids[yes_kids['TRYHHCHILD'] < 3]
+ young_kids['weighted_mins'] = young_kids['t010101'] * young_kids['TUFINLWGT']
+ avg_young = (young_kids.weighted_mins.sum() / young_kids.TUFINLWGT.sum()) / 60
+ return (avg_young, avg_yes, avg_no)
+
+def avg_leisure_by_overtime_earnings():
+ all_cols = activity_columns(summary, '12')
+ all_cols.extend(activity_columns(summary, '13'))
+ all_cols.append('TUCASEID')
+ leisure_data = summary[all_cols]
+ overtime_earnings = respondent[['TUCASEID', 'TUFINLWGT', 'TEERN']]
+ overtime_earnings = overtime_earnings[overtime_earnings['TEERN'] > 0]
+ merged = pd.merge(leisure_data, overtime_earnings, left_on="TUCASEID", right_on="TUCASEID")
+ low = merged[merged['TEERN'] < 5000]
+ med = merged[merged['TEERN'].isin(range(5000,10001))]
+ high = merged[merged['TEERN'] > 10000]
+ cols = activity_columns(summary, '12')
+ cols.extend(activity_columns(summary, '13'))
+ low_avg = average_minutes(low, cols) / 60
+ med_avg = average_minutes(med, cols) / 60
+ high_avg = average_minutes(high, cols) / 60
+ return low_avg, med_avg, high_avg
+
+def education_time_by_age():
+ cols = activity_columns(summary, '06')
+ cols.extend(['TUCASEID', 'TEAGE', 'TUFINLWGT'])
+ activity_data = summary[cols]
+ teens = activity_data[activity_data['TEAGE'] < 20]
+ twenties = activity_data[activity_data['TEAGE'].isin([20,21,22,23,24,25,26,27,28,29])]
+ over_thirty = activity_data[activity_data['TEAGE'] >= 30]
+ the_cols = activity_columns(summary, '06')
+ teens_avg = average_minutes(teens, the_cols)
+ twenties_avg = average_minutes(twenties, the_cols)
+ over_thirty_avg = average_minutes(over_thirty, the_cols)
+ return teens_avg, twenties_avg, over_thirty_avg
\ No newline at end of file