diff --git a/atus_analysis.ipynb b/atus_analysis.ipynb
new file mode 100644
index 0000000..2db8a2f
--- /dev/null
+++ b/atus_analysis.ipynb
@@ -0,0 +1,2054 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import re\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "summary = pd.read_csv(\"atusdata/atussum_2013/atussum_2013.dat\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " tucaseid | \n",
+ " TUFINLWGT | \n",
+ " TRYHHCHILD | \n",
+ " TEAGE | \n",
+ " TESEX | \n",
+ " PEEDUCA | \n",
+ " PTDTRACE | \n",
+ " PEHSPNON | \n",
+ " GTMETSTA | \n",
+ " TELFS | \n",
+ " ... | \n",
+ " t181501 | \n",
+ " t181599 | \n",
+ " t181601 | \n",
+ " t181801 | \n",
+ " t189999 | \n",
+ " t500101 | \n",
+ " t500103 | \n",
+ " t500105 | \n",
+ " t500106 | \n",
+ " t500107 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 20130101130004 | \n",
+ " 11899905.662034 | \n",
+ " 12 | \n",
+ " 22 | \n",
+ " 2 | \n",
+ " 40 | \n",
+ " 8 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 20130101130112 | \n",
+ " 4447638.009513 | \n",
+ " 1 | \n",
+ " 39 | \n",
+ " 1 | \n",
+ " 43 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20130101130123 | \n",
+ " 10377056.507734 | \n",
+ " -1 | \n",
+ " 47 | \n",
+ " 2 | \n",
+ " 40 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " ... | \n",
+ " 25 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 20130101130611 | \n",
+ " 7731257.992805 | \n",
+ " -1 | \n",
+ " 50 | \n",
+ " 2 | \n",
+ " 40 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 20130101130616 | \n",
+ " 4725269.227067 | \n",
+ " -1 | \n",
+ " 45 | \n",
+ " 2 | \n",
+ " 40 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 413 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " tucaseid TUFINLWGT TRYHHCHILD TEAGE TESEX PEEDUCA \\\n",
+ "0 20130101130004 11899905.662034 12 22 2 40 \n",
+ "1 20130101130112 4447638.009513 1 39 1 43 \n",
+ "2 20130101130123 10377056.507734 -1 47 2 40 \n",
+ "3 20130101130611 7731257.992805 -1 50 2 40 \n",
+ "4 20130101130616 4725269.227067 -1 45 2 40 \n",
+ "\n",
+ " PTDTRACE PEHSPNON GTMETSTA TELFS ... t181501 t181599 t181601 \\\n",
+ "0 8 2 1 5 ... 0 0 0 \n",
+ "1 1 2 1 1 ... 0 0 0 \n",
+ "2 1 2 1 4 ... 25 0 0 \n",
+ "3 1 1 1 1 ... 0 0 0 \n",
+ "4 2 2 1 1 ... 0 0 0 \n",
+ "\n",
+ " t181801 t189999 t500101 t500103 t500105 t500106 t500107 \n",
+ "0 0 0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 0 0 \n",
+ "\n",
+ "[5 rows x 413 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "summary.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Int64Index: 11385 entries, 0 to 11384\n",
+ "Columns: 413 entries, tucaseid to t500107\n",
+ "dtypes: float64(1), int64(412)\n",
+ "memory usage: 36.0 MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "summary.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "def average_minutes(data, activity_code):\n",
+ " cols = activity_columns(data, activity_code)\n",
+ " activity_data = data[cols]\n",
+ " activity_sums = activity_data.sum(axis=1)\n",
+ " data = data[['TUFINLWGT']]\n",
+ " data['minutes'] = activity_sums\n",
+ " data = data.rename(columns={\"TUFINLWGT\": \"weight\"})\n",
+ " data['weighted_minutes'] = data.weight * data.minutes\n",
+ " return (data.weighted_minutes.sum() / data.weight.sum())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "def activity_columns(data, activity_code):\n",
+ " \"\"\"For the activity code given, return all columns that fall under that activity.\"\"\"\n",
+ " col_prefix = \"t{}\".format(activity_code)\n",
+ " return [column for column in data.columns if re.match(col_prefix, column)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Pertinant Columns\n",
+ "* TUFINLWGT - statistical weight of respondent\n",
+ "* TEAGE - age of respondent\n",
+ "* TESEX - sex of respondent\n",
+ "* TELFS - working status of respondent\n",
+ "* TRCHILDNUM - number of children in household"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Gender"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "male_crit = summary.TESEX == 1\n",
+ "female_crit = summary.TESEX == 2\n",
+ "male = summary[male_crit]\n",
+ "female = summary[female_crit]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Employment Status"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "employed = summary.TELFS <= 2\n",
+ "unemployed = summary.TELFS >= 3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Age groups"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "children_crit = summary.TEAGE < 18\n",
+ "adults_crit = summary.TEAGE >= 18\n",
+ "adults_18_35 = (summary.TEAGE >= 18) & (summary.TEAGE <= 35)\n",
+ "adults_36_50 = (summary.TEAGE > 35) & (summary.TEAGE <= 50)\n",
+ "adults_51_65 = (summary.TEAGE > 50) & (summary.TEAGE <= 65)\n",
+ "seniors_crit = (summary.TEAGE > 65)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Number of Children in Household"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "#children_0_crit = summary.TRCHILDNUM == 0\n",
+ "#children_2_crit = summary.TRCHILDNUM == 2\n",
+ "#children_3more_crit = summary.TRCHILDNUM >= 3"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Employed people in different age groups"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "employed_children = summary[employed & children_crit]\n",
+ "employed_adults = summary[employed & adults_crit]\n",
+ "employed_adults_18_35 = summary[employed & adults_18_35]\n",
+ "employed_adults_36_50 = summary[employed & adults_36_50]\n",
+ "employed_adults_51_65 = summary[employed & adults_51_65]\n",
+ "employed_seniors = summary[employed & seniors_crit]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Unemployed people in different age groups"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "unemployed_children = summary[unemployed & children_crit]\n",
+ "unemployed_adults = summary[unemployed & adults_crit]\n",
+ "unemployed_adults_18_35 = summary[unemployed & adults_18_35]\n",
+ "unemployed_adults_36_50 = summary[unemployed & adults_36_50]\n",
+ "unemployed_adults_51_65 = summary[unemployed & adults_51_65]\n",
+ "unemployed_seniors = summary[unemployed & seniors_crit]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###Employment status by gender"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "employed_male = summary[employed & male_crit]\n",
+ "unemployed_male = summary[unemployed & male_crit]\n",
+ "employed_female = summary[employed & female_crit]\n",
+ "unemployed_female = summary[unemployed & female_crit]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Average time spent on relaxation and leisure by different age groups and their employment status."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "employed_age_group = [employed_children, employed_adults_18_35, employed_adults_36_50, employed_adults_51_65, employed_seniors]\n",
+ "unemployed_age_group = [unemployed_children, unemployed_adults_18_35, unemployed_adults_36_50, unemployed_adults_51_65, unemployed_seniors]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "employed_leisure_time_per_day = []\n",
+ "unemployed_leisure_time_per_day = []\n",
+ "for i in range(len(employed_age_group)):\n",
+ " employed_leisure_time = average_minutes(employed_age_group[i], \"1203\") / 60\n",
+ " unemployed_leisure_time = average_minutes(unemployed_age_group[i], \"1203\") / 60\n",
+ " employed_leisure_time_per_day.append(employed_leisure_time)\n",
+ " unemployed_leisure_time_per_day.append(unemployed_leisure_time)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "avg_emp_enj = sum(employed_leisure_time_per_day)/len(employed_leisure_time_per_day)\n",
+ "avg_unemp_enj = sum(unemployed_leisure_time_per_day)/len(unemployed_leisure_time_per_day)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEbCAYAAACcO1DvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXe4HVXVh99fGgQCJLTQCaL0LiAoSJQPpAqogIhCQFA/\nUIqAH6iQG1BRQMUCiggElV4iTVFpgtIh9F4CBAi9JLSEZH1/7D25cydzyr333Dsz96z3ec5zZvbs\n2fObPTN7zS6zl8wMx3Ecx+lvBhUtwHEcx2lP3AA5juM4heAGyHEcxykEN0CO4zhOIbgBchzHcQrB\nDZDjOI5TCN0yQJKeljRH0sp9JaisSBoqqUPSupnwMTFPtitKWxmR9D1JWxStozfE6/1KgcfPzcN4\nvx1QhKa+QNKdks5qEGeKpBO7me64mFcL9E5h+yDpJElP99fxmjZAkjYFVgTeA/boM0XlZT7gGGDd\nTPgLwCbAf/tdUbn5HlBpAxQp8kO5Wnm4CXBRP2vpS4zG+dxMnCxXEvLqvZ6IamP67Z7vTg1oD+AJ\n4Fz60QBJGt5fx2oSpVfMbKaZ3W5mbxUlqKQYmbwqA5IGSxranV36TExjcvMw3m+F1cyqgpm9GvOq\nTwvU2DpSyu6MHpaf/XfPm1nDHzAYmAb8FNgWmAOsE7ctCLwDHJCz3x3An1PrKwDnA6/Ffa4GVklt\nHxPT/grwJ+AN4J9x217Af+K+rwPXAR/POea3geeAGcAkYMuY5qdTcQYBRxIM6vvAo8BeDfJgTs5v\nhZTm7VJxpwAnxmO8CLwJ/Dxu+zzwEPAWcCkwMnOcRYE/xPx+j1Cz2riBtqHAScAz8Xyej2kPjdvH\nRY0bAjcB78Zz3jknrZ2AO+OxXwR+BgxJbe8AXgHWA26N1/FuYLPM+Wfz6tN19K8E/DXmydvA5cDK\nOfl/EPAT4GXgJeC3wLAGeTORcB/uDDwIzAQ+1Z1zTa0vEI/5SDzvp+L6Qqk4uwKzgc9m7uu3geNS\nYT8F7gOmE+7XvwCjm8nDuHxgzn3/eLz+jwOHZLY3vG518rCu1sw9fygwlfCMngcskom3FuGefo/w\nHHw+Xp8zG2h4GjghE7Y58O94Lq8SnpsRqe3jYl4tkAo7ivDcv0d4xv6enEte/PS5pdZvINRAvwE8\nCXwILBu37Ue4z96P+x3RRP4meXd01DQ95vHC3S0bov5DgZPj9X68znFHEioU0wktOd8nlCNPp+Is\nBZwZzzMpN44jli0xzu3AWTWevbvrnnujzIkJ/U88sY0Jhd0bwPGp7ecDN2T2+Qipgjlm3rPAXcCX\ngO0JheGzwPypB3VOzIzfEIzH2LjtGOCbwGeBzwFnxwxZKXXMXeL+v4maJ8SLO5uuBuiUmOmHx/R+\nGm+i7evkwdiY9oSYDxsDw8g3QE8THtSLga3jhZ0D/I7w0O9MMLKvA79L7Tdf3P4E8NV4nn8lFF6j\n62g7JubZ14DNCIXgmal8HReP/yTw3ZjuxcAs4otEjLdbzIffxvz7VrzW6Yevg/DA3wvsDWwD3EIw\nCsNjnPXifn9I5dVCNbTPRyjIH466vwDcTyjERmUerGfieW0Vr90sGjzgwFmEB/HRmOefBZbtxrmm\nDdDiwO+jzs2BPQmF6NWZY55LuO8WIrxNXg9MpqtxOyvq+XQ855sJBZfq5OGIVF4ckEpr/xh2YjyX\nnxDu+f/rznVrkIc1tabu+WcILw/bRE3TgVNScYYTXo4m0/kMPEl4meiWAQI+BXxAMHLbEJ6XqcBF\nqTjjSBkUwkvs2/Fab04oL35NLEOy8esc+3rC83ZXzI9t4rU+gvCCcxyh7Po/giE6sIlzmxrT3T7m\n3RvAhd0tG+gsP88jlD3b1DnuJEIZ9HVgB4JhfQ54KhVnLeDnMa82JxjYqcDvU3G+Ea/1gqmwETGs\n/rnX25hK7AzgudT6X+hqJXcmPMxLp8KOIryVDI7rxxEKgpGpOCMJtYMD4vqYmIGXNNAzCBhCKLSO\nToXfAVyRiXsKXd8eP0p4OL+aiXc2cHudY46I6eyVCU80Z2tAj9H1Ab2NUGCumAr7GTAttf51wkO1\ncipscLzpTqij7QrgpDrbx0WNR6bCFPPvvNT6M8AZmX33IRj6UXG9I6Y1NhVn3Rj2uVTYK8AxTdxb\n34r5MiYVtmzMh7TeOcz7kjMJuKVB+hNJ1dh7cK6v1El7CKEgnAMslwofRSho/0iotb0PrF0nncHx\nnOcAmzfKQ1IGiPAsPJ9zLqcQnq1hTVy3rRtdpya0TiHUvAalwn4JvJhaP4BQQC+TCvtkTKu7Bugm\n4NpMnM/EtNbI3PeJAfotcHETz0kjA3QDwZgvkQpbmNDqcnRm3wmE2rXqHHcKoaxM19S+QiinVo3r\nTZUNUf+dTVzHNWPcXVNhCxJamJ6qs9+QqO094gtV6tzHpeLtS7jvR9XT0bDdUtIwgpX/ayr4UmDF\nODABQlPaDMKbYcLuwCQzmx3X/we4BpguaYikIXGfuwlNQ2muytGxuqRJkqYRjN1MYFXgY3H7EMJb\n4+WZXa/IrCdNcpclOuK+1wHrSWpF+6cRCktLhT1JMNrPZMKWiMeHkEd3AVNSugTcyLx5lOYeYJyk\nIyStU+ccJs0VGLRdRnizBlgFWB64KJMv1wPzE96EEmaa2Q2p9Yfj/7J1NNZiY+AuM5uS0vY8oXlh\ns0zcf2bWHwaWa+IYU83svtR6d861C5K+JmmypOmEe/CmVJqJ/jcIb7H7AicAE8zs/kw620q6WdKb\nBAP8XNz0sSbOJ81ywNLMOyjhQkLBsHYqrNZ1q5uHTWo14Hozm5NJf0lJg+P6xoTC8YW5O5ndTKiF\nNU0c1bYJ816//0Z9H6+x62Rguzi6ceOUrp5wl3Xth9uU0ER7cc49NZrG9+m/zOzd1PpfCc/+RnG9\nO2XD35rQn6R7WRJgZu8A/8pGlHSIpIckvUu45/9CaP1ZIe73NqFFZVxqt3HAZfFZqEkzHWfbAosA\n10oaKWkkoQ35A+JgBDN7P57I7lHwqsA6hKa5hMXj9lnxJJLfWOa9OC+lVyQtRCh8liW0b25GyMB7\nCQVGkv5gwltjmux6Eu+tjI6zYvjSdXOjed7MrM+sESbCxUy0bcK8eTSO+jfwjwhvvAcQjNGzkg7K\niZd90F+h83wXj/9/yxz7KULhsnxqv+npRMxsZlycn+6zNJnrndK6aCYsL/+aOWY2/e6c61wk7UKo\nKf+X0Iz8CULTBDk6ro/nIOD0TDobEV6UniU0p2wSf3npNCK5ftlzTNbTedjt69ZNrbXu7/ni+lLk\nG5tuGSBCDXMwcCpdr9/7hDf03OtHaL79PqH59VZgmqTjejiAoNY9lfQzJr/rqHNPRYxMHkRjNIOu\nz2ezZUPe85RlKWB66h5IeIXUIARJhxKadi8h9NdtBBwY46Sv/xnA5vGzlJUJZfSZjUQMaRSBzhFv\nl+Zs21XSIfGt5wLgCknLEwzNy4TMT3gNeIDQFJdlembdMuubEozPlmb2WBIYjWHCq4Qq6xKZfbPr\nrxNqUEnVP0tfji5qVLt6jdAp/q2cbR/U2snMPgDGA+MlfTTuf7KkR83sH6moSxLaltPrydvo6/F/\nf8KbYpYpDbT3lBcIzQFZRhPyoy/o6bnuCtxqZt9OAup86/RTwgveNOBXhP6ihF2Al8zsy6l0VmxK\n+by8GP+XzISPjv+v0ztarXW1nPDROWH1eJNQRown/23/hZywpNZ/MuHZWJZgUH9M6NM4jWDAILwQ\npmsjo/KSy6wn+bw9+QbgsZywBJHJg1jLG0Hn9e1O2ZDVlsc0YCFJwzJGKHsf7UroVzs6pW2eFgIz\nu0nS44Rm7KRZONtiMQ91DZCkBYEdCZ2qf8hs3gD4BaFT9xpC1e1NwtvFboS21nRGXBvDH4o1pu6Q\nDCWcm1GSPkn4LukOADP7UFLSuZl+4/x8Jq3rCG9PI83smm5o6M1bfkKjG+NaQsfhc9bDYbZm9oSk\nIwhvKasDaQP0BeB4gPjWtxNhBAuETvrnCR2yZ/Tk2Blm0nnd6nEbsJekMUkzXCwcNiUUMK0gm+89\nPdf5Sd2DkT2zkSSNJYxK25XwcvUPSZeYWfISN5zwElQ3HZrLw6mEAnc3ul7r3Qi1/PvzduoGzWpt\nhjuAPSUtG5tZkfQp5n1JrIuZvSPpVmA1M/tRT4TE4/9M0j6E5wRCXgKsQRhogaRPEJoyu+yek+Qt\nhH6RZc3s7z2QtJWkBWMzGATDbwSjAy0oGzLcEf93JjTXImkEYYBPuibb1D0fOZNQ7hjwp0z5n0uj\nGtBOhBvwV2Z2R3qDpJuBHxBqSNeY2SxJlwKHEap3/5tJ6xeEN47rJP2G8NCMJnxod5OZnU9tbiFU\nR0+PX0MvRyicnqdrreJ44JKY/hWEDuJkhoI5AGb2qKTfA+dLOoHQrjo/4S38Y2a2f54AM5sZvxDe\nXdJDhLele2vorVXTaVQD+hPhDecGSScROj8XI7Sdv2hmJ+cmKk0i3Kj3EB6CLxGM7I2ZqF+XNJPQ\nTLAfYaTi7vH85kg6DPizpIUJ/XozY5ydgC9288XhEWB7SVcTOmwfMbMZOfEmEkYL/V3SMYTrNJ5Q\nEz2tG8erR/bbrZ6e67+AUyR9n2C4tyO8gHUeKDzEZwLnJwZH0mnA7yTdaGavEt4MD5b0S8LHkp8k\n/6FumIfxXDqA0yS9RngZ3IJwHx2V08TSXZrV2kzf6VnAD4GrouYFgGMJrReN9s9u/x6hW2AOoXlo\nOqFPYjvgB2b2+DwJhOvwGuGl5y3CoIWPxbSI4c8Dv5Z0NOHZO4Iw0ix9fGX1mNmb8Zx+FWuINxFq\nAqsQBn58ocH5vUfIlxOBZQjNXpea2SNxe4/KhlqY2YOSLifclwsTakRHEO6z9Ln9CzhI0m2EJuo9\ngVoz4ZxNqFEOIlzrpoTUGylxOeGmr7X9FELVM/neJOngf65G/KUJD+c0QgH+NCFjV4/bxxCa0bbL\n2fdzhLe5dwkF7TaEdvYLM/GS74DeITwwXyIzCirGO5jQJPg+obnwejIj43I0bEUwOu9Fncl3QF00\nk//NwllkRtkR2m9n03X0y8KEZoJnCVXrZDj3pnV0HU54o3mT8LDcAuyYOU7yHdB/ov5HgV1y0tqG\nYLhmEB7SuwmFRDKacTzwcs5+2aHBG9D54tBlGHzOvisRBki8TShIan0HdEAmLFdLo3zv6bkSHqwT\nCU0sbxE6/jem6+cGpxEKsfRozwUJA07SQ4SPiNd4BqGQ/2izeVgjL5LvgD4gjIw6uJm8yksrJ04z\nWvPu+XHMe3+vTehDe58wSKE33wFtTPiO562o7UHCdywL5x2fMPw8+ZbwHUI5sk8mzQ0JLxfvEF5O\nP5k9NjnlTmrbnoSXwXcJZeMtZL7JqnFuJ8ZrNC2eyznM+x1Qw7KhmeuZijuSMFx7BqGp74dRR3oY\n9oKEMvu1+PsDoZlxNnG0YSbN/wA3NnN8M5v7zUGfI+nMKPxlM1s7hp1IGH8+k/CA7mMtnlFA0g8J\nQ8IXtdBX0nZIGke4iUZY15E2juMUTGxZucjMvtcwcomRtBjBKB5oZk3VgPpz+oizCG+caf4JrGlm\n6xI66Y7qzQEkLS7pF5J2lLRlrBJ/n/CNRFsaH8dxSk/ppqzqDpJGxL6y3xJaMc5rdt9mRsG1BAuj\nJMZkwtJjzm8DvtjLwyTfBn2NMHT8BUKV9eh6O7UJ/VPVdRynu1T92dyQMLhrCuFD/ab7ivutCQ6C\n6wLCTAVr52y7gvBV/rn9JshxHMcpjFLM4CrpB4SvtN34OI7jtAn91gRXi9hBvh1hBF2tOFWvojqO\n4xSCmZW2j6lQAyRpG8IQzy0atRuWORMTJHWYWUfROhpRBZ1V0Aius9W4ztZS9pf3fmuCk3Qe4evi\nVSU9J2lfgtuEEcC/FCZ4PLW/9PQRY4oW0CRjihbQBGOKFtAkY4oW0CRjihbQJGOKFtAkY4oWMBDo\nz1FweV5UG05W5ziO4wxMSjEIYQAxsWgBTTKxaAFNMLFoAU0ysWgBTTKxaAFNMrFoAU0ysWgBA4F+\nHYbdUyRZFfqAHMdxykTZy87CR8ENJCSNta4Ov0pJmXSWvZPUcapCmQ1NLdwAOYWT9+CUyUjWw3W2\nFtfZM6r6IudNcE6h+LV1nN5T6zkq+/PlgxAcx3GcQnAD1EKiJ8zSUwWdVdAIrrPVuM72wg2Q4ziO\nUwjeB+QUSlmvraQpBHf0KyVO/CTtB+xpZp8pUpvjZPE+IMcZeAwiuG53HKcPcAPUQqrSLlwFnSXQ\naMBJwOGSFslulPRJSXdImiHpdkmbprbdIOlYSf+R9Lakf0R3xcn2TSTdLOkNSfdI2qKvT6YE+dkU\nrrO9cAPkOLW5E7gBODwdKGkUcBXB2+6OwC+Aq2J4wh7AOGBJYFiShqRlgSuBY81sVAy/RNLifXki\njlNG/EPUFlKmD9PqUQWdiUZNaM0Hdja+R+3gBhwD/FfSr1Lh2wOPmdk5SYCkg4DPA2fH/c4ysyfi\ntgvjNoCvAn8zs6sBzOwaSXcSfGL9qQcamzuRClxzcJ3thhsgp9T00HC07vhmD0q6EjgSeDgGLwM8\nk4n6TAxPmJZafo/gdgRgRWBXSTumtg8BrmuZaMepCN4E10Kq0i5cBZ0l0zge2B9YNq6/QDAkaZ0r\nAs83kdazwJ/NbFTqt5CZndBizV0oWX7WxHW2F26AHKcBZvYkcAFhRJwBfwNWkbQHMFjS7sBqhL6d\nhFo1t78AO0raWtJgSfNLGhv7hhynrXAD1EKq0i5cBZ0l1HgssACAmb0O7AAcBlxCGEiwQwxPsMyy\nxX2nAjsB3wdeJtSIDqOPn8US5mcurrO98A9RnULxa+s4vcc/RHUq0y5cBZ1V0Aius9W4zvbCDZDj\nOI5TCN4E5xSKX1vH6T3eBOc4juM43cANUAupSrtwFXRWQSO4zlbjOtsLN0CO4zhOIXgfkFMofm0d\np/d4H5DjOI7jdAM3QC2kKu3CVdBZBY3gOluN62wv3AA5Tg6Spkh6SdICqbD9JF1fpC7HGUh4H5BT\nKGW9tpKmAAsCvzCz42PYfsCeZvaZIrU5ThbvA3KcgUWzLrnfrIJLbscpI26AWkhV2oWroLMkGptx\nyb0LFXDJXZL8bIjrbC/cADmlRsJa8evh4ROX3N/JGIi0S24zs/OBR+h0uz3XJbeZvQ9cCKwXt83j\nkptg6LbroUbHqSzukruFVMVHSBV0JhrNajp26y8ddV1yp/Ky1C65q3DNwXW2G26AHKcx44G7gZ/H\n9bkuuVOsCPy9ibQSl9zfaJ08x6km3gTXQqrSLlwFnWXSWM8lt6Qtq+CSu0z5WQ/X2V64AXKc5qjl\nkvsyKuCS23HKSL99ByTpTELn7ctmtnYMW5TwZrkiMAXYzczezNm31GPZnZ7j19Zxeo9/B9SYs4Bt\nMmFHAv8ys1WAa+O64ziO0wb0mwEys5uANzLBnwfOjstnAzv3l56+oCrtwlXQWQWN4DpbjetsL4pu\ndx5tZi/F5ZeA0UWKcRzHcfqP0gzDNjOTVLNDStJEQj8RwJvAPclY/ORtxNebW0/CyqKn1npaaxn0\n5K2b2Q1l0uP52b75mVoeF1enUHL6dTJSSWOAK1KDEB4BxprZNElLA9eb2Wo5+5W6I83pOX5tHaf3\n+CCEnnE5sHdc3hv4a4Faek1V2oWroLMKGsF1thrX2V70mwGSdB5wM7CqpOck7QP8FNhK0mPAZ+O6\n4ziO0wa4PyCnUPzaOk7v8SY4x3GcFJImSjqun485VtJz/XlMp+e4AWohVWkXroLOMmlUcDD3uqRh\nOdvGFiCp2yQ6JXVImiVpeur3eoPde8rcKYiapej8lHSCpGcVHAlOlfQLSfOMFk7l51ckPSNphqRJ\nSvmEknSSpMdiWg9L+lo/nkolcAPkOHWIIzc3Jszb9vm6kXuWfn9/CmHAeWa2UOq3aB8er7TNPzU4\nA1jDzBYmXPetgf3yIkpaE/g9sCfhG8Z3gVNTUWYQ5ghcmDDI6ldKec513AC1lPR3NmWmCjpLpHEv\n4Brgz8QRm5LmU3DFvWbqW4wlJL2r6LhO0g4K7rbfkPRfSWsnCUqaIul7ku4DpivMin2kpCfi2/KD\nknZOxR8k6eeSXpH0lKRvS5ojaVDcvoikMyS9EN/aj0u2JaTyU9QxCjHd/5X0eNRyrKSVJd0Sz/l8\nSUNj3LHxeEdFbU9L+kqdtPeP6b4m6bL46QWSTpF0UlqnpMslHRKXl5F0iaSX4/l/J5Xm8NjU97qk\nB4GNal/KxpjZo2Y2I5VXc4AXc+LdQDA8l5vZf8zsHeBo4AuSFoxxOszssbh8O3AT4AYohRsgx6nP\nXoQJcy8EPidpCTP7ALiE4HY7YTfgBjN7VdL6hDfp/YFFgdOAy5OCO/JlYFtgpJnNBp4ANotvyxOA\nv0hKZgb5BmEexXWBDQhTVqWbtiYCM4GVgfWp89beJFvHdDYB/g84PZ7rCsDamfMeDSxGcMa3N/AH\nSR/LJijps8BPgF2BpQkO/M5P6d9DkmLcxYEtgXOiIb0CmByPsSVwiKSt477jgZWAjwCfixp6NbIq\nvgxMB54DrjSzy2pEXQO4N1kxs6eAD4BVctIcTjCOD/RG24DDzEr/CzKL19GEzrFFa6iazlrXNtEI\n1gFmOb+O/P1y4+fGbULbZgRvpgvF9XuAQ+LylgSjEXXyX+Crcfl3wLGZtB4BNo/LTwPjGhx7MrBj\nXL4O2D+1bUvCm/kgggF4H5g/tX0P4Lr8/KSDUEi+kfpdm4o3B9g0tX4ncERq/STgl0mawCxgeGr7\nBcAP4/JZST4QDPJPU/EWJBjNFeL6Q8D/xDS/TSj4AT4BPJM5l6OAM+Pyk8DWqW37A8+16N5cn2Ao\nv5B3fxJqxt/IhE8FPp0T/2yCK/b+fo5yw8vy8xqQU2rM6DBDOb+ObsTPjdsEewP/NLPpcf0iOj+c\nvoHgH2i12E+0LjApblsROCw2v70h6Q1gObq67O4yUkvSXpImp+KvBSweNy+diT81tbwiMBR4MbXv\n74El6pzXBWY2KvXbMrP9pdTye5n19+l0Lw7whpm9l1p/JurNktR6ALDQZPUakDji+xPw1bj8VUKT\nZ3J+y2Ty8ihgybh9GbrmzbM5xwZA0vdTAy9OrRUvpXEyoU+n1uCBGcAimbBFgOnpAEknEmpLuzU6\nZrtRmrngBgJWnn6LulRBZ9EaY5PJbsAgSUkfwHzASEnrmNl9ki4EVgVGEaaYeifGexb4sZn9pM4h\n5jYTSVoR+APhY+xbzMwkTaazr+ZFYPnUvunl5wg1msXMbE7Ng3Xmp9G7gQHZ5q1RkhYws3fj+orA\nfTn7vQCMSVZiP8liwPMx6C/A/cAvCd5lk1lRngWetuCyJY8XCU2DD8f1FWoKD9ej3jXJYyjwTjbQ\nwpx1WxFePACQtDIwDHgsFTaB0DS4hXX2LTkRrwE5Tj47Ax8CqxMKmXXj8k2EfiGAcwl9OV+Jywmn\nA9+StLECC0raXlK65pBmQULB/irB4O1DqAElXAgcHDvjRxL6ZZL2lReBfwK/kLRQHLCwsqRP1zhW\nT4yPaiwnTJA0VNLmBKeTF6XiJvHPA/aRtK6k+QiG4FYzezaex1RCc9+fgIst9LMB3E4YqPG9OOBg\nsKS1JG0Yt18IHCVppKTlgLkDFLp9koFvxrQkaWPgAODSGrucQ3Cvvlk0qMcBlyQvIpKOIjSHbmVm\nWVc0Dm6AWooq9k1ImSmBxr0I/QxTzezl+HsJ+C3wFUmDLIxsmk1oXvp7sqOZ3UXoi/gt8DrweEwv\nt3PczB4Cfg7cAkwjGJ//pKKcTjAy9wF3AVcBs1M1nr0Ib94PxeNdBCyVPkYqPw3YXV2/A3o7dvwn\n2+eRmFlOr08j9CO9QGg2+6bFkV/puGZ2LWGU2CUx7koE453mbMIgh6T5jXiOOwDrAU8BrxBqiwvH\nKBMITXtPA1cTDFhvBiHsTOhXeovQb/VDM5trgGJ+fUphNvmHgG8RDNFLwHCCwUr4MaG2+kQqr93p\nZgqfiqeFKOXioMyUSWeta1smjfUoQqekbYHfmdmYbuzTcp3RqP3ZzJZvFLfJ9DYHLjKzpRpGLpiy\n3Z91nqNSl51ugJxC8WvbGEnzE/qH/kkY9XYJcLOZfbdgXWNpkQGKQ9TPByab2Y96m167UVUD5E1w\njlN+RBg+/TpwN/AgcEyRglL0+g1W0uqEZrzRwMm9VuRUBjdALaQE/RZNUQWdVdAI/aPTzN4zs43N\nbGEzG21mX+/uiKq+0GnBg2nNUWfdSOdhMxthZpsBGzbcoQRU5f4sO26AHMdxnELwPiCnUPzaOk7v\n8T4gx3Ecx+kGboBaSFXahaugswoawXW2GtfZXrgBchzHcQrB+4CcQvFr69RCUgewspn1myfROLHs\nU8CQenPrlQ3vA3KcAYrquOSuGgrO247LhI1RysFdiSj/23EGzevy/O1o1GrF31LSI5LekXSdpBV6\nmlYVKdsNV2mq0i5cBZ1l0agGLrl7q1P95JI7MxdcaQv2TH6W9s29znXPujxf2Mym1EhjccKsFj8g\nzKh+J8GfUrfTqipugBynPnVdcieRVHKX3BnqFuxR32GS7lWnG+75Utsbndvhku6Lb+1nSBot6e+S\n3pL0L4UZvdM1r/0lPS/pBer4zJH0+Zg3b0i6XtJqMfwISRdn4v5a0smN8ifm7Ukxb58kzObdG+q6\nPM/wBeABM7vEzGYSZrtYV1LieqI7aVWTnnix6+8fJffq57+Be20JXk/3BD5G8OC5RAw/A/hRKt6B\nRI+XBE+aLxFcMItgxJ4GhsbtUwhT6iwLzBfDvgQsFZd3Izg7Gx3Xv0WYfmcZYCTBIM4GBsXtkwhe\nWIcTHNHdRsZTZ0rnWcBxmbAxRA+rcf1p4FbCjNqjCLNsf7PJc3sauDnqWCbGvZvgzmI+4FrgmMxx\nz4na1yLUNLeM2zsIc81BcHM9g+ANdjBwBGGW8SGE2chnAIvEuEPicddvlD8xbx+O12IUcH06b3tw\nv4wH3iQ423sA+FaduL8CTsmE3Qfs0oO0cp+jWuFl+RUuoMmLWupM9F8fXlvoyPPHbdDRjfj5cRtr\na+iSOxW3FR/HAAAfRUlEQVS31C65U9uaNUBfSW3/GWH27WbPbY/UtovThSzB3fakzHFXyRzrj3G5\ng04DdDRwfiqeSLm/JrjD2C8u7wA8GJfr5k/M22+ktm2Vzose3DOrEwy3gE0Jrie+XCPuH4HjM2H/\nAfbqQVq5z1Gt8LL8vAmuhZSl36IRVdA5V6NZB2bK+XXk7pgfPz9uYxq65Jb0LVXAJXfqmn8Y46cZ\nCsyxrqO+pqWW36PTDXcz59Ydl95kzm2+TFoJy5Byt22hdH2OTpfeZ9PVpfefUnrr5U82b+u59N4z\nNSDglrw4Fua1m2aBWwi1nC/VSHIGnX6NEua69O5mWpXEXXI7Tg5q3iX3llTAJXeKZ4E1M2ErkTGI\ndfQ2c25ZGvVjrAA8GpeXpNNNd5rnCc7qQoKSCPmQxL0MOFXSWoR+nMNjeKP8SVx6p7XkYmbnEJoL\nW/US9yCdLzSJm/KVY3hb4DWgFmIlclBVjyroLIHGZl1yb0YFXHKn8vMSYHtJW8XBD8sAPyS4zK5H\nYkS6e27N8EMFd9trEgz6BTlxLoq6P6vgO+gwQm3q5nh+78VzOxe4zYKL72by50LgIEnLShoFNOWx\ntNb9KWknSaNi3mwMHEQwjnlMAtaS9AUFn0/jgXssepTtZlqVxA2Q4+TTrEvuGVTAJXfmWHsAxxM6\nt2+Ox51QJy/SrrW7dW6p/edJK8W/CYM9rgFONLNrco77KKFp7TcEt9zbE/rIPkylczYh7/5MV+rl\nz+nAP4B7CcOgL2lwLo3YnZAnb0c9x5vZXD2SHpC0RzynV4EvElx3v05wRfHlZtMaCPhMCC1EJXPT\nW4sy6ax1bcuksR5F6FRJXHL3FuXMOtAbnZKWJwyIGG3d9JfUg2OVKj/rPEelLju9BuQ4JUfS/JK2\nkzRE0rKEpppLi9ZVJuJ3PYcRPtzsU+PjtA6vATmF4te2MXFAxL+B1Qijyq4EDq56QRtrQE8SviHq\n8bxrsfP+JcIQ8G3MLG8Qw4CmqjUgN0BOofi1dZzeU1UD5E1wLaQK39dANXRWQSO4zlbjOtsLN0CO\n4zhOIZSiCU7SUYQhlnOA+4F9zOyD1PZSVyOdnuPX1nF6T1Wb4Ao3QLEj8jpgdTP7QNIFhEkdz07F\nKXUmOj1HUvFvQI4zAKiiASrDVDxvA7MI82rNBhYgfyqO0lO2bwNqUSadtR6OMmmsh+tsLa6zvSi8\nD8jMXid8Bf4sYbbXN1NfQjuO4zgDlDI0wa0MXAFsDrxFmCbj4jjxXxKn1NVIx3GcMlL2srMMTXAb\nAjeb2WsAki4FPkmcdTZB0kSCIy8ITpruSarAyZBIX/d1X/f1dl6Py+MITKHklKEGtC7B2GxEmN12\nInC7mZ2SilNqK55QlXbhKuisgkZwna3GdbaWspedZegDupfgPOpOwmy/EHyjOI7jOAOYwmtAzVB2\nK+44jlNGyl52Fl4DchzHcdoTN0AtpCrzQ1VBZxU0gutsNa6zvXAD5DiO4xSC9wE5juMMUMpednoN\nyHEcxykEN0AtpCrtwlXQWQWN4DpbjetsL7ptgCTtJmnhuHy0pEmSNmi9NMdxHGcg0+0+IEn3m9na\nkjYDfgScBBxtZp/oC4HxmKVux3QcxykjZS87e9IENzv+7wCcbmZXAsNaJ8lxHMdpB3pigJ6X9Adg\nd+AqSfP3MJ0BR1XahaugswoawXW2GtfZXvTEcOwK/APY2szeBEYBR7RUleM4jjPg6VYfkKQhwANm\ntlrfSco9bqnbMR3HccpI2cvObtWAzOxD4FFJK/aRHsdxHKdN6EkT3KLAg5Kuk3RF/F3eamFVpCrt\nwlXQWQWN4DpbjetsL3riEfXolqtwHMdx2g6fC85xHGeAUvays9s1IEkzgMRqDQOGAjPMbOFWCnMc\nx3EGNt3uAzKzEWa2kJktBAwHvgCc2nJlFaQq7cJV0FkFjeA6W43rbC969QGpmc0xs78C27RIj+M4\njtMm9GQuuC+mVgcBHwe2MLNNWyksc8xSt2M6juOUkbKXnT0ZBbcjnX1AHwJTgJ1aJchxHMdpD3wU\nXAuRNNbMbihaRyOqoLMKGsF1thrX2VrKXnb2xB/Q8tEH0Cvxd4mk5fpCnOM4jjNw6Ukf0DXAOcBf\nYtCewJ5mtlWLtaWPWWor7jiOU0bKXnb2xADda2brNgprJWXPRMdxnDJS9rKzJ8OwX5P0NUmDJQ2R\n9FXg1VYLqyJV+TagCjqroBFcZ6txne1FTwzQvsBuwDTgRYJ/oH1aKcpxHMcZ+PgoOMdxnAFK2cvO\npr8DkvSb1KoB6ZMyMzuoZaocx3HaGIlBwHyZ3/w1luttKzXd+RD1LjoNzwTgGDqNUPmrUf1Ahb4N\nKL3OKmgE19lqitQpMZimC/2jN4DjnqwRr6fGIr0+BJgJfBB/79dYbrSt1DRtgMxsYrIs6WAzO7tP\nFDmO05ZIDIetlpJYjd4X5j0p9AfTdMG+7ghgjfxtvAu8UWNbs4ZkplnvX+wlftDbNPqSHvUBSZps\nZuv3gZ5axyt1O6bjOD1HYingIOAbwDt0FsQ9Lbx7um1WKwr9MlH2srMnc8E5juP0mljTOQz4EnAu\n8AkznixWldOfND0MW9IMSdMlTQfWTpbj7+0+1FgZqvJtQBV0VkEjuM7uIiGJzSQuA/4NTAU+ZsaB\nZjxZFp2NqIrOstOdPqARfSnEcZyBS+zg3wk4AlgC+DmwhxnvFirMKRT/DshxnD4jDCxgb0JT2+vA\nCcBfzZhdqLA2oexlZ688orYKSSMlXSzpYUkPSdqkaE2O4/QcicUljiH4C9se+DqwiRmXuPFxEkph\ngIBfAX8zs9WBdYCHC9bTI6rSLlwFnVXQCK5z3uPwEYnfAo8DKwKfMWNHM25sZoSZ52d7UbgBkrQI\nsLmZnQlgZh+a2VsFy3IcpxtIbCRxIXA7MB1Yw4yvm/FQwdKcElN4H5Ck9YDTgIeAdQkzLhxsZu+m\n4pS6HdNx2pE4Xcy2hIEFHwF+CfzRjOmFCnPmUvays/AaEGEk3gbAqWa2AeFDtCOLleQ4Ti0k5pPY\nB7gf+DFwOrCyGb904+N0hzJ8iDoVmGpmd8T1i8kxQJImEjo0Ad4E7knmjEraY4teT8LKoqfO+iFl\nzL/M+npmdnKJ9OSuZ6990Xr6Mj/B7gG+Cf88HN6ZArscAlwD2gL4FHh+Fr0el8fFLJxCySm8CQ5A\n0o3Afmb2mKQOYLiZ/V9qe6mrkQk+4WPrqIJGaA+dEssDhxD8fv0NOMmMe1ooL3WsgZ+f/UnZy86y\nGKB1gT8Cw4AngX3SAxHKnomOMxCRWIfQv7M9MBE42YxnCxXldIuyl52lMECNKHsmOs5AQULAlgTD\nszbwa+A0M94oVJjTI8pedpZhEMKAoSrfBlRBZxU0wsDRKTFE4iuEUai/Bi4AVjLjp/1pfAZKfjrN\nUYZBCI7jFITECMIsBYcCzxAcTf7NjDmFCnPaAm+Cc5w2JPrg+Q7BB88NhIEFtxUqymk5ZS87vQnO\ncdoIidUkTidMdzUK2NSMXd34OEXgBqiFVKVduAo6q6ARqqEz+OA54DvRB8+NwPPAKmYcYMYTBcvr\nQhXyE6qjs+x4H5DjDFC6+uD5/AqEWQvcB49TGrwPyHEGGCkfPN8F3gBOBCa5G4T2o+xlp9eAHGeA\nILEYcGD83Q7sB9zUjBsExykC7wNqIVVpF66CzipohHLoTPngeYIaPnjKoLMZXGd74QbIcSqK++Bx\nqo73ATlOhXAfPE53KHvZ6X1AjlMBJOYDvgIcDswiDCy40IxZhQpznF7gTXAtpCrtwlXQWQWN0Pc6\nJRaR+B7wFMEAHQKsb8Y53TE+np+tpSo6y47XgBynhEQfPAcTfPBcDexgxuRiVTlOa/E+IMcpEdEH\nz+HADsDZBB88zxSryqkqZS87vQnOcQomTJXDlhJXE2o7DwMrm3GoGx9nIOMGqIVUpV24CjqroBF6\npzP64NmD4IPnt8BFBB88x7faB0875Gd/UhWdZac6BkiynF9HjbgdRcQ/DcaVSU+t+KfBuDLpyYt/\nPVxfJj2tjP+SRv/kVzrYVmTKrM258dzL2XH92QxazdDyZnzQF3oGcn76/dkgfonxPiDH6ScyPnj+\nDZzobhCcvqTsZWd1akCOU1EkVs3xwfMlNz5Ou+MGqIVUpV24CjqroBHq65T4VPTBcxMF++AZCPlZ\nJqqis+z4d0CO00KiD57PE6bKGQ38AvfB4zi5eB+Q47SA6INnL+Aw4E3CVDmXug8ep0jKXnZ6Dchx\nekH0wXMAwQfPncD+0OkGwXGc2ngfUAupSrtwFXSWTaPEYImVJLaROETidxLXwTVTgJWAz5qxgxn/\nLqPxKVt+1sJ1thdeA3KcFBKLAKtmfqsBHwVeBR6Nv4eBSfB/w83uuqwguY5TabwPyGk74kCBMXQ1\nMMnywsBjBCPzCJ0G5zEzZhSh13F6StnLTjdAzoBFYiTzGphVgZWBV+hqYBKD87wZcwoR7Dgtpuxl\npxugFiJprJndULSORlRBZ7MaJYYQ+mCyTWarAgvS1bgky4+b8U5/6iwa19laKqSz1GWn9wE5lUBi\nUfKbzD4CTKPTwNwDXBDXXyjjgADHcQJeA3JKg8RQQm0m22S2KjCcrrWYZPlxM94rRLDjlJyyl51u\ngJx+J347kzUyqxEGBrxAfrPZi16bcZzuUfay0w1QC6lQu3Cf64y1mZXJbzYbSv4AgCfMeL+/NLYC\n19laXGdrKXvZ6X1ATo+RELA4+SPNVgSm0mlgbiW4mH4UeMlrM47jeA3IaYjEMMKHmHkjzcS8zWWP\nEmoz8zpXcxyn3yh72ekGyAHm1maWJL/JbHngWeZtMnsUeMVrM45TTspedpbGAEkaTJjMcaqZ7ZjZ\nVupMTKhCu7DEfLDbHnDh23Q1MqsBs8kfAPCkGTP7V2f58xJcZ6txna2l7GVnmfqADgYeAhYqWshA\nQGJ+gmFZE1gj/q8JrAD7vgxMJhiXG4HTgUfMeLUguY7jtCGlqAFJWg6YCPwY+G5Va0BFEA3NanQa\nmeR/eeAp4EGCYU/+H+/v2ozjOMVQ9rKzLDWgXxI8SC5ctJCyEh2e5dVolgOepNPInBv/HzdjVjFq\nHcdxGlO4AZK0A/CymU2u52ND0kRgSlx9E7gnaYNN9it6PQnrTXrB0Oy1J6wyBn44CFgDrt4Qhi0B\nn30ceBBOexdemAwTvg88DvpUTnpLQs3jHVLG/Musr2dmJ5dIT43r1fXaF63H87O98zMuj4tZOIWS\nU3gTnKSfAF8DPgTmJ9SCLjGzvVJxSl2NTOhOx2Ss0axG1xrNGoQazRN0bTZ7kDCsuSU1mip0oFZB\nI7jOVuM6W0vZy87CDVAaSVsAhw+kPiCJBcjvo1mWYGiyfTQtMzSO47Q3ZS87C2+Cy6E8FrEbpAxN\ntkazLPA4nUbmT/H/STc0juP0BZqgQcBKRetoRKlqQLUokxXPGJq0sVkG/vYCbHc789ZoPixKbx5V\naD6ogkZwna3GdXYfTdBCwNrAuvG3Tlx/nQ5WKEvZmUcZa0ClIBqa1ek64mwNYGm61mgmxv8nYfvN\nynJTOo4zsIi1mjF0NTTrAksRyqN74+9c4H4bb2+oQ6WuYbR9DUhiQfJrNEsDjzFvH82TZavROI4z\nsNAEjSDUYhIjs25cf4tOQ3Nf/H/cxtvs3HRK1HqUR9sYoGho8mo0SxEMTXbU2VNuaBzH6Us0QSLU\natKGZh1C33FSq0kMzX023l7vVvpugHpPdzIxZWiyH2yOJr9G0zJDU6Z24XpUQWcVNILrbDUDWacm\naEFgLboamnWA6XQ1NEmtptflUtkNUGX7gCRG0LVGk/yPJsxxlhiZP9JZo8mtpjqO47SKWKtZgXn7\napYjTPKbGJmLCX01bTsHY2VqQGD70LVGsyTB0OTVaNzQOI7T52iCFqCzVrNO6v9d5u2reczGW79+\nelH2GlCVDNA5dDU2T7uhcRynP4i1muXpamjWJdR0klpNuq/mlYKkdsENUAsoeyYmDOT26/6mChrB\ndbaaMujUBA0ntLJk+2o+IDEyNzKTT3MB8Eh/12q6Q9nLzsr2ATmO4/SGWKtZlnn7asYQBiwlTWhX\nAPfaeHt57r7SWLvW7u9vzQMNrwE5jjPg0QTNT2etJt1X8yHz9tU8YuNtQPjMKnvZ6QbIcZwBQ6zV\nLMO8fTUrEWYwSQ91vtfG20sFSe0Xyl52ugFqIWVov26GKuisgkZwna2mWy5NQq1mdTqNTGJ0jJSR\nIRidh228fVCEziIpe9npfUCO45SaWKtZinn7alYmeANODM0/4v80G1+BN2vHa0CO45QHTdB8dNZq\n0k1oYt6+modaWasZiJS97HQD5DhOvxCHNy9N6KNJfstmlpcHniLTVwO86LWa7lP2stMNUAupULtw\n6XVWQSO4TgBN0FBCE9kyNX6JkVkQeBF4AXg+/qd/L3ICy9k79s++0NlKKnTdS112eh+Q4zi5RP8z\nS5BfW0n/FgNeZl6DclNm/bVGtRh1aMm+OBenpJhZ6X+AgeX9OvLjW4fH9/gePz8+HYgOFqWDtehg\na7Y67K9s/mNjuwON3Xc29tvYOHQ545jBs+ngZTq4hw7+Rgd/pINj2fbAK1n1MmPpO40RLxj6sNTn\n287xQxHfP+V0T37eBOc4A4joyKxRjWUZwrQytZrCkt807+SvNmUvO90AtZAKtQuXXmcVNEL/6Yzf\nvNTrwE9+Q5jXqDzPDYxkLNfE9RdtvL3T15p7gl/31lL2stP7gNqI+D3FUIYyWBMkH1VUPJqgIQQf\nVrVqK0n4CDo78NO/B+hak3k777qqQ2Pteruxr8/HcbqD14AqRDQg8wMje/EbFH8CZuX8ZvYirK/i\n1tp/VlmNaOzAX5zGNZbFgFdp3Bz2mo23Of17Fk7VKXvZ6QaoH4kGZDiNjcQidbbNAd5s4vdWXriN\nt/ejlkHAUGBY/E//8sK6E7e/9h9CmEyyP4xdrbjD6No0lhiZpeI16NoUNq9hebkVrpcdJ4+yl51u\ngLqjo5EBuYP12Yg3am4Pv9k0Z0ByjUpiQHp1HhVov25G49wmxSKN5f0sxtpMZl4jU6oO/Cpcc3Cd\nraYsZWct2qoPKBZYC9C9JqtsbeRDatU0BrMA8ARhfqo+MyBOIDa/zYy/QpA01i4uf0HkOGWkUjWg\nHhqQ7G8WvauBlOat1nEcpx5lrwFVxgDRwau4AXEcx2mashugKjXBrUnJDUiF2oVLr7MKGsF1thrX\n2V5UxgCl/bE7juM41acyTXBlrkY6juOUkbKXnYOKFuA4juO0J26AWoiksUVraIYq6KyCRnCdrcZ1\nthdugBzHcZxC8D4gx3GcAUrZy06vATmO4ziFULgBkrS8pOslPSjpAUkHFa2pp1SlXbgKOqugEVxn\nq3Gd7UXhBogws8GhZrYmsAlwoKTVC9bUU9YrWkCTVEFnFTSC62w1rrONKNwAmdk0M7snLs8AHiZM\nZ19FRhYtoEmqoLMKGsF1thrX2UYUboDSSBoDrA/cVqwSx3Ecp68pjQGSNAK4GDg41oSqyJiiBTTJ\nmKIFNMGYogU0yZiiBTTJmKIFNMmYogU0yZiiBQwESjEMW9JQ4Erg72Z2cs724kU6juNUkDIPwy7c\nAEkScDbwmpkdWqgYx3Ecp98ogwHaDLgRuA9IxBxlZlcXp8pxHMfpawo3QI7jOE570tJBCJJmS5os\n6R5Jd0natIl9WjrgQNKPJT0raXom/KOSbor67pW0bSuPWwSSzpT0kqT7U2EbS7o9nucdkjaqse9x\nMR/ukXStpOVj+BhJ78X9J0s6tb/Op0gkzS/ptpgfD0k6PrXtO5Iejh9K/6zG/h2SpqbybdvUtqMk\nPS7pEUlb98f5lAFJUyTdF/Pj9hi2a/zofLakDRrsP0++t+v9mYekkZIujnn0kKRNcu7DbYrWWRcz\na9kPmJ5a3hq4oTv7tEjDxsBS2XSBicA34/LqwNOtPG4RP2BzwrD1+1NhNwCfi8vbAtfX2Heh1PJ3\ngD/G5THp9NrpBywQ/4cAtwKbAZ8B/gUMjduWqLHveOC7OeFrAPcAQ2PePgEMKvpc+yk/nwYWzYSt\nBqwCXA9sUGff3Hxv5/szJ4/OBvaNy0OARWrdh5n9OoC9i9ZvZn06DHsR4PVkRdIR8c38Xkkd2cgK\nnCjp/vjWtFsMP0XSjnF5kqQz4vK+kn6UTcfMbjezaTl6XoyaIHxE9nxvT7BozOwm4I1McFPnaWbp\nGuII4NWWC6wYZvZuXBwGDCbk7beA481sVozzSp0k8kYb7QScZ2azzGwKwQBt3DLR5adLnpjZI2b2\nWBP7/S/N53vbIWkRYHMzOxPAzD40s7eSzQ12Nzr72wul1QZoeKz2PQycDhwHEJsdPmpmGxPe2DeU\ntHlm3y8A6wLrAP8DnChpKcIAhSTusoTaCzHs393Qdjywt6TngKsIb/0DkSOBn0t6FjgROKpWxKS5\nEtgb+Glq00rxOt4QB4m0BZIGSboHeIlQc3yQ8Lb+aUm3xvzYsE4S34kvWGdISr6UXwaYmoozlXAf\ntwMGXCPpTkn7d3Pfj1E739vy/sywEvCKpLMk3S3pdEkLxG1592Ea0dhI9QutNkDvmdn6ZrY6sA3w\n5xi+NbC1pMnAXYSH+qOZfTcDzrXAywTjshFwE7C5wvxwDwIvRcO0CXBzN7T9gtDMtDywHfCXHp1h\n+TkDOMjMVgAOBc6sFdHMfhDjTQR+GYNfAJY3s/WB7wLnSlqobyWXAzObY2brAcsRCr+xhKaNUWa2\nCXAEcGGN3X9HKBTWI9RCf17vUC0TXW4+Fe+jbQlzPGZfOutRK9/b9v7MMATYADjVzDYA3iG8fJ5K\nzn0oae2kXwj4JnBsqp9o0ULOgD6cCcHMbgUWl7REDDo+Gqf1zWwVMzsruwtdrbJCMvYCoSlpG0Jt\n6D/A7sAMM3unG5I+SbyJo7b5JS3e7RMrPxub2aS4fDGxuSe+KU2WdGXOPucSjD1mNtPM3ojLdwNP\nEt5G24bYlHEVsCGhxnJpDL8DmCNp8Wx+mtnL8eXJgD/S2cz2PLB8KvnlGADNv81gZi/G/1eASdRp\nelQYUJO+P/PyfTG/P+cyFZga8wbCs76Bmb2Sdx+a2f1J+Qv8Hjg6VR6/nnuEfqDPDJCk1WL6rwL/\nAPaVtGDctmzKMCXcBOwem0GWIDSx3R633QocQqgV3QQcTjBG3eERQtMesTY1v5kNxH6PJyRtEZc/\nCzwGYGb7xJttBwBJ6Yd2J2ByDF9c0uC4/BHCw/1Uf4kvinjeI+PycGArQp78lZCPSFoFGGZmr+bk\n59Kp5HYBkpGJlwNfljRM0kqE/LydAY6kBZKaSXzut6YzT+ZGSxbMbN90fpKf76+16/2ZJfZzPxfz\nBkLZ9mBsHUpI34dZStEEN6TF6Q2PVTwIJ7h3tMT/ioX+LZIAZgB7Aq8QmyPMbJLCsO17Y9gRsSkO\ngtHZysyein04o2LYPEg6AdgjankOON3MjiVU48+QdGhMf+8Wn3u/I+k8YAtCTfM54BjgG8ApkuYD\n3ovreRwvaVVgNuEt8n9j+KcJ1fNZwBzCyME3+/A0ysLSwNmSBhFenP5sZtdKuhE4U2Go+0xgrxr7\n/0zSeoR762lCMwdm9pCkC4GHgA+BA+IzMdAZDUyKz/sQ4Bwz+6ekXYBfA4sDV0mabGZ5n0ScSX6+\nt+v9mcd3gHMkDSM8w/sCv867D3MoxT3oH6I6juM4hVCa2bAdx3Gc9sINkOM4jlMIboAcx3GcQnAD\n5DiO4xSCGyDHcRynENwAOY7jOIXgBsgZ0EjaWdKc+M1TK9P9apxv6wEFFw6nxwkiHcdpEjdAzkBn\nD+DK+N8SFHysHAJsY2ZrEebkupnw8WU2rj9jjlMD/xDVGbBIGgE8QPh6/h9xklwUPs8/heBz5jlg\nFnCmmV0i6eOECRwTFxXjsu49JN0E/NDMcmdjlzQFOJ8wnc8JhBe9owizg1xlZkfGeDPMbERc/hKw\nvZntI2ki8D7wcWBhgn+Xq1qSKY5TIvztzBnI7ARcbWbPEqauTzxwfhFYMRqkrwGbAiZpKPAb4Itm\ntiFwFvDjnHTXAO6uc1wDXjWzjxOmjPopwditB2wkaadUPHKWAVYws42A7YHfx+lWHGdA4QbIGcjs\nAVwUly+isxnuU3TOjP4SwTsnwKrAmgQfNpOBH9DAd09qmvsnFJ0oRi6I/xsRfAu9ZmazgXMINbJ6\nWErfE4TJNlevu4fjVJBWT0bqOKUg+jj5DLCWJCN4OJ1DmJQWas8G/KCZfbJB8g8SmsduMLP7gfUl\n/QaYPxUncRWS62YktS1heINjzmmw3XEqh9eAnIHKl4A/mdkYM1spOt6bEp2i/Rf4ogKjgbFxn0eB\nJSRtAiBpqKQ1ctI+HjhJUrp2VMuA3AFsIWmx6Ebgy3R68n1J0mpxoMIudBokAbtGfSsDH4naHGdA\n4TUgZ6DyZbq6GQe4JIZ/G9iS4CLhOUJ/zltmNisOBvh1HFI9hOAp9qF0Imb29+iz6u/RqLxJ8Lvy\njyRKKu6Lko4kNPMJuNLMroibjySM0HsFuBNYMLX/swS/QQsTXA7M7EVeOE4p8VFwTlsiaUEze0fS\nYsBtwCdT/qcKRdJZwBVmdmnRWhynL/EakNOuXBk9oA4Dji2L8XGcdsJrQI7jOE4h+CAEx3EcpxDc\nADmO4ziF4AbIcRzHKQQ3QI7jOE4huAFyHMdxCsENkOM4jlMI/w8mn0PGQIGXBQAAAABJRU5ErkJg\ngg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "label = [\"Below 18\", \"18-35\", \"36-50\", \"51-65\", \"65+\"]\n",
+ "emp_enjoying = pd.Series(employed_leisure_time_per_day, index=label)\n",
+ "unemp_enjoying = pd.Series(unemployed_leisure_time_per_day)\n",
+ "emp_enjoying.plot(color=\"green\", label=\"Employed\")\n",
+ "unemp_enjoying.plot(color=\"blue\", label=\"Unemployed\")\n",
+ "plt.title(\"Average time spent on relaxation and leisure per day\", fontsize=15)\n",
+ "plt.ylabel(\"Hours\")\n",
+ "plt.xlabel(\"Age Group\")\n",
+ "plt.ylim(ymin=2, ymax=12)\n",
+ "plt.hlines(avg_emp_enj, xmin=0, xmax= 4, color='blue', linestyles = \"dashed\", label = \"Average Employed - {:.2f}\".format(avg_emp_enj))\n",
+ "plt.hlines(avg_unemp_enj, xmin=0, xmax= 4, color='red', linestyles = \"dashed\", label = \"Average Unemployed - {:.2f}\".format(avg_unemp_enj))\n",
+ "plt.legend()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Average time spent on sleeping by gender and their employment status."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "male_group = [employed_male, unemployed_male]\n",
+ "female_group = [employed_female, unemployed_female]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "male_sleeping = []\n",
+ "female_sleeping = []\n",
+ "for i in range(len(male_group)):\n",
+ " male_sleeping_time = average_minutes(male_group[i], \"010101\") / 60\n",
+ " female_sleeping_time = average_minutes(female_group[i], \"010101\") / 60\n",
+ " male_sleeping.append(male_sleeping_time)\n",
+ " female_sleeping.append(female_sleeping_time)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEbCAYAAAB3DOvsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYXVW9//H3JwkQQugQOgTpPfQqRmkKl2JB5CqKFa8F\nvJYr6pVhvPeq2O61/SyoNAVERYogoRsCgVACgSAlQOgdAiEQIOT7+2Otw95zMjWZmb3nzOf1PPPM\n7H3W2XudNees71llr62IwMzMrEojqs6AmZmZg5GZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeUc\njDoh6QFJCyVtVHVeBpukpSSdKGm7pv3jc5kcWFXe6kjSf0h6Wz8c5+hcvmP6I1+LmYeFkj4ziOe7\nWtKfBut8VZD0A0kPVJ2PocDBqImk3YENgFeAIyvOThWWAU4Atmva/xiwG3DtoOeo3v4DWOJgVBO7\nAYMZHCL/tLrh8BqXmIPRoo4EZgFnMojBSNKyg3WuXlJ5IyJei4hpEfFCVRmqqaCprIaq/P99ehBP\n2RLl1gtL/DprWD/0OwejEkkjgfcD5+afLSRtmx9bTtK8zroxJN0o6YzS9vqSzpb0bH7OJZI2LT3e\n6PL6V0mnS3oeOD8/9mFJU/Jzn5N0paQdOznn5yQ9LOklSX+VtE8+5t6lNCMkHS9plqT5ku6W9OEe\niuHF/PuUfLyF+fUs0k0nabak7+dzPC5pjqQf5scOkXSnpBcknStppab8ryLp15KekPSKpGsl7dJd\nxnIX4g8kPZhfz6P52EvlxxtdXTtJukbSy/k1H9bJsQ6VdFM+9+OSTpI0qvT4iZKeljRB0vX5/3iL\npL3Krx9YFWgrldXezefqTd67eM5oSd/L/+f5km6V9K5O0n1C0sycZrakrzQ9fmp+jx4m6a78mq+R\ntEVTuoWSPlvavlrSn/L7dFb+X14saZ2m560v6e+5vO+X9BFJf5Z0VVevLYv0dH0q5/tlSX+TtHbp\n2NMkndLJaz5V0i3dHVzS4ZLuzce9UtL2+TV+ZDHLbz9JM5Q+c9dI2rIp3UqSzpQ0V9Jjkr7eRb4W\np364oLvX2hIiwj/5B9gXWAjsAiwFPA98p/T42cDVTc95S37OgXl7FeAh4GbgfcBBwDV53+icZnx+\nzmPAT4F9gIn5sROAY4B3AAcApwEvAxuWzvnu/Pyf5jy3A7OBN4C9S+l+DswFvpyP911gAXBQN2Uw\nMR+7PZfDLsDSpTwfWEr7APAw8Gdgf+DrOc0vgFuAw4B/BZ4DflF63jL58VnAh/LrPI8UCNfoJm8n\n5DI7CtgLOBz4Xalcj87nvw/4Yj7un4HXgW1Lx3l/Loef5fL7dP5ff7+U5kRgHnAb8BHgncBU4Clg\n2ZxmQn7er0tltfwS5n1M6Tl/A57M74d9gZPza9mulOYrwGvAf5HeR18F5gOfLaU5Jef7PlJr/93A\nDNJ7cplSuoXAZ0rbV+U0U4CDgSOAJ4CLSmkE3Arcnx8/jPTefwi4sofP29XAI7mMD8t5ewiYVkrz\nKdJ7eLnSvrF532e7OfZOpM/DWaT35heAe/Jr/PBilN+TwPT8fzsYuBu4vemcfyW91z8O/Et+fQ8D\n95fSLFH90Mo/lWegTj/Ab4GHS9u/Bx4obR9GqsTWKu37GvAMMDJv/xfwNLBSKc1KwJzGB730ZvtL\nD/kZAYwC/gl8s7T/RuDCprQ/z8fcO29vnD+MH2pKd1r5w97JOcc2f2Cb8lwORrPzB1ylfTeQKswN\nSvtOAp4obX8ceBXYqLRvJCk4fa+bvF0I/KCbx4/OeTy+tE+5/M4qbT8I/LbpuR8lBf2V8/aJ+VgT\nS2m2y/sOKO17GjihF++t3uZ9TN7eJ2/v1ZTuH8A5+e8VgJfK7428vx14vPF/AU7Nx9qtlGb9/H86\nprSvORhdTQq2K5b2HZfTLZO3D8rbO5bSrE2q4HsTjF4F1i3t26NcxqXXeHQpzcdIAWPlbo79J2BG\n076vUHpv97H8Xm96vx6aj7Vp3t4qbx9eSrMc8Cwdg1G/1Q+t9uNuukzS0sB7SN/QG84FNlCa1ABw\nCenNe3gpzRHAXyPijby9L3A5MFfSqNz18xKpJbBT02kv6iQfWyh1uz1BCnyvAZsBm+THR5G+kTc3\n2y9s2m5UZuc38pGfeyUwQVJ/9NcHqaVYHqC9jxTAH2zat3qpG2xf0jfD2aV8CZjMomVUditwtKSv\nSNq2m9fw1zczmPJ2PqnVArApsB7wp6ZyuQoYDWxdOs5rEXF1afuf+XeHbqpe6m3eG/YltUKmdvL/\na5TR7sAY4M+dvJY1gHVLx3syIq5vbERE49t5t12jwI3RcZywuQx2Bh6PiJtLx34sH7s3bomIR0rP\nvY7Uitslb79Iat0eXXrO0cD5EfF8N8fdmUU/E83bfSm/ByLivtJ2oxwaaXbOv88vvZZ5wGV0HDNa\novqhlY3qOcmw8S5gReAKFeMb15O+uR0JTI2I+ZLOJwWgn0jaDNgW+FLpOKsBu+Y0zS5v2n6yvCFp\neeBS0reyfyd9g38V+A2pomwcfyTp21VZ83YjXWcTDgJYi9QNsKTmNG2/1sU+kbr7FuS87Ub6ttls\nVjfn+m/yt3dSa+tRSd+PiJ80pXuqaftp0uslnxvg4k6OH6RA1TC3w4MRr+UYMpq+623eG1YD1qTz\nMlpQSgMws5M0jdfycN7ubGLC0/kc3ensfwlFGaxJ6hlo9gypZdCT5v9VY185X78FrpY0nvSe3ov0\nee3OGvTuMwK9K7/elMPciHitKV1n51ys+qHVORgVGjPnzu3kscMlfSEiFgJ/BC6UtB7pDfUU6dtq\nw7PAHaTmeLO5TdvNUz53J33j3Cci7mnsVMfB/2dI3W+rNz23efs5UqXV6PZoNpCzpnr61v8scBNp\nrKbZq109KSJeBdpIEwY2zs//P0l3R8SkUtJxpO6l8nYj8D6Xf3+SNAbQbHYPeV8sfch7w3PAo6Tu\noK40XstBdF5x3VP6e1wnj48Dbu8p7z14gkXfe+R9L/fi+Wt0se/xxkZEXCPpXlJX6ghSuVzai3w1\nv+bOPiPQu/Lr6T39BLC8pKWbAlJzHpakfmhpDkakmXKkQckzSYPRZTsAPyJNALic1OyeQxoEfz/w\n56Zuqivy/jsjYn4fs9KYvvnmm1nSHqTrnm4EiIgFkqaTxq9OLj33kKZjXUn6FrlSRDR/4+pO8ze+\nxdHTh+gK0qDyw7GYU4kjYlae9fRZYAugXKG/B/gOpBmFpAp9Wn7sblJltmFE/HZxzt3kNYr/W6/0\nkPeGy0mTMOZFxN1dHGoq6Xq4dSLi7z2cdpyk3SNiKqQZXcD2pFZHl1nt4ZiQyvUESTtHxI352OsA\nO5IG5nuyg6T1IuLh/Nw9SUFjWlO635HKK4DTmz5znbmR9Jkuz2hr/oz0pfx6cz5In8tzACSNBfaj\nY6tqSeqHluZglBxKqlB+3PhANUi6DvgGqeV0eUS8LulcUtfcmsC/NR3rR6QZYldK+inpG/kapAsj\nr4mIs7vJx1RS//HJkr5P6o9uI1We5W9m3wH+ko9/IbAn0JhyvRAgIu6W9EvgbEnfI/XhjyYNtG4S\nEZ/sLAO5K+oB4AhJd5IGim/rIr9dfVvs6Vvk6aSWwdWSfkCalbcqaZzg8Yj4v04PKv2V1KK6lVSJ\nvI8UcCc3Jf24pNdI3S+fIM14PCK/voWSvgScIWkF0jjgaznNocB7+1hJ3AUcJOkS0uy7uyLipSXI\nOzmfl0maBFwm6STgTtKA+wTS5IGvR8QcSScCP5a0AanyH0EaF5sYEe8pHfIZ4PeS/pP0P20ntQZO\n7ea1iR7+lxFxsaTbgHMkfS0fu43UUuisRd7saeAiSW2kz+BJwM0R0dzyOQ34n/z6Fpnq3YmTgBsk\nnU16jVuQ3gtQfEb6Un49lcNMSRcAv8jvqydIEybmNT13SeqH1lb1DIo6/JAmA9zVzeM/JzXpl8rb\njckBD3eRfi3SN7knSB/OB0gV8Bb58fGkrrYDO3nuAaSuk5dJFdc7SQOq5zSl+xypP3seaQrw+3Ke\ntm1KdxypW2A+qUvxKppm2HWSh/1IAeiVnM/1O8tzfl3fa3ruKTTN1iMNOL9Bx2nLKwD/R5rS+irF\nFPHdu8nXl0nfQOeQpoFPBQ5uOs9C0kDwlJz/u4F3d3Ksd5ICwUukcbVbgG9RzIpsA57q5HnNM852\noPgS0WFq/WLkvbmMlibN6rs3l9HjpLGudzUd+4OkQPcy6X06FfhC6fFT87kPy+Uxn1TxbtnDa+vs\nfTcx53PL0r71gb/n8n6AVOlPAs7t4X12FakVcQxpfPRl0qD9Ol2knwJM7sPn+vBcdq/k/3Xjc3tI\nH8uvs/f0eBb9PKxEmkr+Uv5f/SfwfUqz6Za0fmjln8bUxX4n6XekvtinImKbvG8V0pjLBqS++fdH\nRPPAIJLeSaqoRgK/iYiTBiSTLSR/4/0asEqk8YlhR9LRpA/52IjozXjFsCDpVGCriNi5p7T9dL4V\nSdcd/SQi2vvpmKuSvrB8NiJ60zLq7BgfIlX6G0bH2Z5WAwPZTXcK6YKt00v7jgcui4jvSfpq3j6+\n/CSlVRAaFyM+Ctwo6YKI+CcGgKTVSH3hV5G+zb2VtEbab4ZrILLqSPo0qcVxL2m854uki8Z/1w/H\nHkvqWv4CqUV5Vh+e+wvSGO/zpBbsN4C/ORDV04AFo0gzYMY37T6EYlHJ00gXvR3flGYXYFZEzAbI\nfb6HUszrt+Lao6NI09EfI7Ukv1llpmpiWM1A6qVgYMvlFdLKBRvk89wA7Bt5UsIS2ok0GWc26WLV\nvoznrULqYl+VNGZ2NulLm9XQgHXTQVpjibRSQKOb7vmIWDn/LeC5xnbpOe8jXX39ybz9IWDXiPj8\ngGXUzMwqVdkKDJGiYGeR0N9szcyGmcGe2v2kpDUj4glJa9H51deP0vEq+PVIiykuQpIDl5nZYoiI\nWt3CY7CD0QWkFZBPyr/P6yTNTcAmuYvvMdL1IV3eV6huBVoVSSdGxIlV56MOXBYFl0XBZVGo4xf5\nAeumk3QWcB2wmdL9WD5KuoXBfpLuobilAZLWlnQRpBUGSNfQTCJd6PdHz6TrlfFVZ6BGxledgRoZ\nX3UGamR81Rmwrg3kbLquWjP7dpL2MdI1SY3tv5MuojMzs2HAt5BoHadWnYEaObXqDNTIqVVnoEZO\nrToD1rUBndo90CSFx4zMzPqmjnWnF0ptEZImRscbwQ1bLotCK5dFHQfh66huQacrDkZmNmT1paJt\n5cDclaEUsN1NZ2ZDkj//PeuqjOpYdp7AYGZmlXMwahGSJladh7pwWRRcFgWXRb05GJmZWeU8ZmRm\nQ1JdP/+SZpNuob5h4yaPkj4BfDAi3j7IefGYkZnZMDYCOK7qTAwlDkYtwv3hBZdFwWVRGMSyCOAH\nwJfzLdib87GHpBslzZE0TdLupceulvQtSVMkvShpUr7leuPx3SRdJ+l5SbdKelvz8YcqByMzs/53\nE+lO1l8u75S0MnAR6c7MqwA/Ai7K+xuOBI4GxgFLN44haR3gb8C38k1Jvwz8RdJqA/lCBovHjMxs\nSOrp86/2/rngM9r6VsdIegD4OPAkcC2wMXAY8EHgt8DnI2LXUvrrgF9FxGmSrgIui4hv58f+DTgk\nIt4l6avAVhHx4dJzLwHOjIjTu8jLkBkz8goMZtaS+hpE+v38ETMl/Q04HmjcBmdt4MGmpA/m/Q1P\nlP5+BRib/94AOFzSwaXHRwFX9lumK+RuuhbhsYGCy6LgsihUVBZtwCeBdfL2Y6SgUrYB6Q7XPXkI\nOCMiVi79LB8R3+u/7FbHwcjMbIBExH3AH0kz6wK4GNhU0pGSRkk6AticNBbU0FWL7vfAwZL2lzRS\n0mhJE/NY0pDnYNQihtsCkN1xWRRcFoUKy+JbwJich+eAfwG+BDxDmoTwL3l/QzT9Hfm5jwCHAl8H\nniK1lL5Ei9TjnsBgZkOSP/89G0oTGFoioprHBspcFgWXRcFlUW8ORmZmVjl305nZkOTPf8/cTWdm\nZtYHDkYtwv3hBZdFwWVRcFnUm4ORmZlVzmNGZjYk+fPfM48ZmZmZ9YGDUYtwf3jBZVFwWRRcFvXm\nYGRm1o8kzZb0pKQxpX2fyLeHsC44GLUIr0FWcFkUXBaFQS4L33a8jxyMzMz6l287vhgcjFqE+8ML\nLouCy6IwyGXh2473kYORmbUkiSj/QFzVvK83P4t5+gBOAD7fFCwOAu6JiD9ExMKIOBu4Czik9LxT\nImJWRMwHzgEm5Mc+BFwcEZcARMTlpKB34GLmsVZ82/EW4bGBgsuiMJzLIqLLm9QN0vl92/G+cDAy\nMxs4bcAtwA/zdle3Hf97L47VuO34p/ove/XhbroW4bGBgsui4LIoVFEWvu147zkYmZkNLN92vBe8\nNp2ZDUn+/PfMa9OZmZn1gYNRi/DYQMFlUXBZFFwW9eZgZGZmlfOYkZkNSf7898xjRmZmZn3gYNQi\n3B9ecFkUXBYFl0W9eQUGMxuyJPVpnEGqVc+UlXjMyMxsmKlj3eluOjMzq5yDUYtwf3jBZVFwWRRc\nFvVWSTCSdJyk2yXdIWmRW/Pmxf9ekDQ9//xnFfk0M7PBMehjRpK2Bs4CdgZeBy4BPp1Xt22kmQh8\nMSIO6fQgRbra9XuamdVdHevOKlpGmwM3RMT8iHgD+Afwnk7S1aqgzMxs4FQRjO4A3ippFUljSLfh\nXbcpTQB7SLpN0sWSthz0XA4x7g8vuCwKLouCy6LeBv06o4i4S9JJwKXAPGA6sLAp2S3AehHxsqR3\nAecBm3Z2PEmnArPz5hzg1satlhtvPm8Pr+2GuuSn4u0JQJ3yU9k2MEFSbfIzmNv576NzOcymhiq/\nzkjSt4GHIuKX3aR5ANix6QZUtez3NDOruzrWnVXNphuXf68PvBs4s+nxNZQvlZa0CyloPrfIgczM\nrCVUdZ3RnyXNBC4APhMRL0o6RtIx+fH3AbdLuhX4P+ADFeVzyHB/eMFlUXBZFFwW9VbJ2nQRsXcn\n+35V+vvnwM8HNVNmZlaZyseMlkQd+z3NzOqujnWnlwMyM7PKORi1CPeHF1wWBZdFwWVRbw5GZmZW\nOY8ZmZkNM3WsO90yMjOzyjkYtQj3hxdcFgWXRcFlUW8ORmZmVjmPGZmZDTN1rDvdMjIzs8o5GLUI\n94cXXBYFl0XBZVFvDkZmZlY5jxmZmQ0zdaw73TIyM7PKORi1CPeHF1wWBZdFwWVRbw5GZmZWOY8Z\nmZkNM3WsO90yMjOzyjkYtQj3hxdcFgWXRcFlUW8ORmZmVjmPGZmZDTN1rDvdMjIzs8o5GLUI94cX\nXBYFl0XBZVFvDkZmZlY5jxmZmQ0zdaw73TIyM7PKORi1CPeHF1wWBZdFwWVRbw5GZmZWOY8ZmZkN\nM3WsO90yMjOzyjkYtQj3hxdcFgWXRcFlUW8ORmZmVjmPGZmZDQNql4BNgT05kd/Wre4cVXUGzMxs\nYKhdKwHvAA7IPyOBSZVmqgtuGbUISRMj4uqq81EHLouCy6IwHMpC7RoJ7AzsTwo+2wDXkgLQpcA/\noy2ijnWnW0ZmZkOY2rUeRfDZB3iUFHzagCnRFvMrzF6vuWVkZjaEqF1jgL0put5WBy4jBaDLoi0e\n65BeCNgA2BPYC9gBtEvd6k4HIzOzGssTD7ahaP3sBtxC0fV2S7TFwjfTi1HAthTBZ0/SWNG1wJT0\nW9PqVnc6GLWI4dAf3lsui4LLojCUykLtWh3YlxR89gdepgg+V0VbvPhmWjEW2JUi8OwGPEyH4MP9\nEUTxnPrVnT2OGUl6P3BJRLwo6ZvADsB/RcQtA547M7NhQO1amhREGl1vGwNXkwLQf0Vb3PdmWrG2\nTuQAiuCzOXArKfD8FDgygmcH9QX0gx5bRpJuj4htJO0F/DfwA+CbEbHrYGSwO3WM7mZmvaF2bUzR\n9fY24F6K1s/UaIvXJUYAW1AEnr2AFenY6rk5gj5NUqhj3dmbYHRrREyQ9F3g9oj4g6TpEbH94GSx\n27zVrkDNzDqjdq0AvJ2i9bMsRfC5LNriGYnRpKnZjeCzB/AcKfA0gs/dESxc9Ax9yEsN687eBKOL\nSFMF9wO2B+YDN0TEdgOfve7VsUCrMpT6wweay6LgsigMdlmoXSNIwxqN4LM9MJUUfCYBd3BirEoK\nOo1Wz3bATIrAc20ET/R73mpYd/bmOqPDgXcB34+IOZLWAr4ysNkyMxt61K61Kbre9gWeIgWeb/PS\nGpP5wRPrkILOcfn3WqQAdS3wDWBaBPOqyHvVum0ZSRoF3BERmw9elnqvjtHdzIYPtWs08FaK1s/a\nwOXApTy59VX84vbV6TjF+lWKVs8U4I4I3hj0fNew7uxNN935wLER8eDgZKn36ligZta68jU/W1K0\nfvYAZgCX8vDuUzj1ytG8MXoPUvDZEbiP0mSDCB6qJucd1bHu7E0wuobU1zkN3mw+RkQcMsB561Ed\nC7QqHhsouCwKLovC4paF2rUqaZmdxjU/CwhN4p6DpvO3X77B3HV2ILV63gLcRDHZ4PoIXui3F9CP\n6lh39mbM6Jv9fVJJxwGfAAScHBE/7iTNT0hjVS8DR0fE9P7Oh5lZM7VrFOki0kbX2+a8MWoydx4+\nk8lf/x1Pb7UZ6CDgMIpWz6nA9AheryrfQ92gr8AgaWvgLNL0xdeBS4BPR5Qv6tKBwOci4kBJuwI/\njojdOjlW7aK7mQ09atd4iuDzdl5d/kHuOOJObv7Uqzy+wzrEyF2Bx+g43nNfeVWDoaSOdWdvVmB4\nCd4s8KWBpYCXImKFxTzn5qSp4fPz8f8BvAf4finNIcBpABFxg6SVJK0REU8u5jnNzN6kdo0FJtII\nQC+uszJ3vvdO7vjAyzy242wWLr0paVhiCvBX4F8jeKa6HLe+HoNRRIxt/C1pBClQLNJK6YM7gP+R\ntArpmqWDSONRZeuQ1lZqeARYF3Aw6oLHBgoui4LLIlG7RnAuH+M9rMbCEQfwzFa7cPfBD3PXYfN4\nYrtleWOZkaAXKVo9N/V1VQNbMn26n1FELATOk3QicPzinDAi7pJ0EunCr3nAdOj0auLmJmSnzWFJ\npwKz8+Yc4NbGh0/SxHxObw+j7Ya65Kfi7QmkNc7qkp/B215X72YzdmLXsRvy2MR3MneppfjJIXOZ\n86mxLBz1JPxxNky+A3b9HXAXaO/8/Cm1yH8/bue/jyaZTQ31Zjbde0ubI0jTFd8WEbv3SwakbwMP\nRcQvS/t+CVwdEWfn7bvyOZ9sem7t+j3NrBpq1zLAnjy/4aE8stvBPLbj2sx650s8u+lYRiy4mwXL\nXkUxxfrxirNbqTrWnb1pGR1M0SpZQIqqhy7JSSWNi4inJK0PvJs0c6XsAuBzwNmSdgPmeLzIzMrU\nLrFg6U2ZPfGDPLntITz92y2ZPXEBc9cewTJzb2P+SqezcKnJwLR4Y6mXqs6vda+S+xlJmgysSppN\n9+8RcZWkYwAi4lc5zc+Ad5K68j4andyyoo7RvSoeGyi4LAqtVhb62N6r8eguH+eF9Q7juY225dFd\nRrNw1HzGPHMrr654PvPWuAy4PYIFizy3xcpiSdSx7uzNbLr1gJ+QrigGmAwcFxGPLO5JI2LvTvb9\nqmn7c4t7fDNrDVr9nyuz9k0f5vXl3sOL60zg6YtWYLkn57L84zOIEW28usKfeGP0Q/HKKkNyirUV\nejNmdDnwB+D3edcHgQ9GxH4DnLce1TG6m9nik1iPcbcfwtIvvZd543bgpTVWZNzMeaw0+3ZGv3AB\n81b7XfzzPe6yX0J1rDt7E4xui6bbRXS2rwp1LFAz6x2JkcDWLP3i21nu6UN5ZeUdUYxhvWvfYNVZ\nM1npgQtZ77rfxq9ursV6bq2kjnVnbyYwPCvpKOBM0nTrD4Av/qob94cXXBaFOpWFxHLALrBwL0a/\ncAAjl92RsU8uZMMrl2LcHfez5q0ns8HkMxm5YHq0xRLdPK7z89enLGxRvQlGHyPdV/1Hefs64KMD\nliMzawkSa9K4cdyI1yaiEVuyyqwX2XjSGNabOpe1p53JKg+cD1wVbTG34uxaxSqZTddf6tjUNBuO\nJERa6ivfuyf2YsSCcax+55NscvEYNpq0AmvffBXLvPR34NJoK9aitMFXx7qzy5aRpJ+WNoOOKyJE\nRBw7YLkys1qTWAbYieLGcXsw4rWXGXfH42xx3mg2P28NVp95FyMWTiLd6fT6aAuvaG1d6q6b7maK\nINQOnEARkIZuc6pFuT+84LIo9FdZSKxCupHcXvlnAlpwL2vMeIRtzlqarf/4Eis+vBRwJyn4XB5t\nUauxZb8v6q3LYBQRpzb+lnRcRJw2KDkys0rlLrcNKQLPnsB6sPAGxs28nx1PvpdtzxjBsnO2AZ4m\nBZ8vATOjbQj3+1ulejVmJGl6RGw/CPnpkzr2e5oNNRJLAdtRBJ69SIsXT2HF2bfztv8exbZnbMGo\n1/YhrZzf6HqbHG3xSlX5tsVXx7rTwchsmJFYgXQbmEbw2YW05uQUlpkzjYM/vYCtzpmA4gBgLeBy\nUvC5NNoWf+UVq4861p1dBiN1vKneskD5G1DE4t9cr9/UsUCr4v7wgsuikG4dELPo2OrZhDQmfC16\nYwofOPR5Nrtod9KN5vYAbqNo/dwcbfFGJZnvZ35fFOpYd3Y3ZjS2q8fMrJ7yqgZb8WbwuWQfYCTF\n7bL/wNFvm834yW8jBZ9fkxYsngT8Ejgi2mJOJZm3Yc3XGZkNYRJjSN1sjVbP7qRxncYdS6fwma0e\nYNydu9K4xXa6HugfFK2fWZ54MLzUse50MDIbQiTGUQSevYCtgRkUwee6CJ5SuzakCD5vB+6nCD5T\noy1erSD7VhN1rDsdjFqE+8MLrVIWeYr1ZhTBZ09gdWAqRbfbjRG8rHaNJQWdA4D9gRWAS5nMQ+zN\nT6PNN6dslfdFf6hj3dmbtenMbBDkVQ12oGj17AG8RNHq+REwM4KFatcIYAJwnNo5ANgRmEZq+bwf\nmBFtsVDSxLjCgcjqzy0js4pIrEyxqsGepEB0D0Wr59oI3pxKrXatSWr1HADsBzxHnnINXB1tMW9Q\nX4ANWXUR1L7yAAAV0UlEQVSsOx2MzAZB7nIbT8cp1hsAN1AEn+sjeHP1arVrmZyuMfazPnAFxTU/\nDw7iS7AWUse608GoRbg/vFCHspAYxaKrGkAReKYAt0Ww4M3ntKsxRtQY93krMJOi9TMt2uLN9L3L\nR/VlURcui0Id606PGZn1A4nlSasaNALPLsBDpMBzIfBVYHZEx0WG1a6VgX0oApBIwecU4Khoi+cG\n6zWYVcktI7PFILEOHVs9mwK3ULR6pkawSCBRu0YBO1N0vW2V0zdaP3f5mh8baHWsOx2MzHogMYIU\nNMpTrJenfGEp3BJBp9fuqF3rUwSfdwAPUwSfKdEW8wf6NZiV1bHudDBqEe4PLyxpWUgsy6KrGjxN\nEXyuBe5u7nJ78/ntWg5oLLezP7AqcBkp+FwabfH44uatr/y+KLgsCnWsOz1mZMOexOp0bPVsC9xB\nCjwnAx+NoMtrdfLEg20pgs+upIVILwU+BEyPtlg4kK/BbKhzy8iGlTzFehM63jhuDTquajAtgpe7\nPU67xpGu9Wlc8/MSRdfbVdEWc7t5ulml6lh3OhhZS5NYmmJVgz3zzyt0nGI9M4Jub5Ogdi1NukC1\n0frZCLiKFHwmRVvcP1Cvway/1bHudDBqEe4PT9KqBl/9FJy0Iinw7AjcS8dVDR7u8Tip621jiuDz\nNuBucvABro+2eH1gXkX/8fui4LIo1LHu9JiRDVm5y20DOk6xHg+73wNcBPwPaVWDF3t1vHatSJrt\n1ghAy5ACz5nAx6Itnunv12BmiVtGNmTkVQ22pWPwGcGiqxr0qsWido0ktZwawWcCcB1F62emr/mx\nVlTHutPByGpLYiwdVzXYlXSNTnmK9f1dTbHu9JjtWoci+OwLPEERfCZHW7zSn6/BrI7qWHc6GLWI\nVugPl1ibjjeO2wy4leLC0qkRPNvzcYqyULuWBfamWO16LeByisVGH+nqOK2gFd4X/cVlUahj3ekx\nI6tEXtVgSzpe37MiRavnWODmCPq0OoHaJbZiQ7VrR1IA2oMU0C4FPgbcHG3R7cw5Mxt8bhnZoMir\nGuxEEXj2IN2Pp9Hqaaxq0OeLQ9WuVUnX+uyff16nuMX2ldEWL/THazBrFXWsOx2MbEDkVQ3KN47b\njnQ7hPIU6ycW69jtWoo0ltToetsMmEwRgGZ54oFZ1+pYdzoYtYgq+8PzFOuN6TjLbS3SqgaNbrdp\nESz2nUjVrrdQTDx4O3A/RfC5LtritSI/HhtocFkUXBaFOtadHjOyPsurGmxPx1UNXqVo9fwUuKOn\nVQ26PUe7licFnUbrZ3nSuM+fgWOiLZ5aktdgZvXilpH1SGIl0srVjVbPTsAsSlOsI3hoic7RrhGk\nANdo/ewITKNo/cxw15tZ/6hj3elgZB3kLrf16djltiFwE8Vkg+sjWOJJAWrXWhSTDvYjTWhoBJ9/\nRFssdreemXWtjnWng1GLWNz+cImRpFUNylOsl6LjhaXTe7uqQbfnatfofI5G19v6wBUU1/w8uKTn\nAI8NlLksCi6LQh3rTo8ZDTN5VYNd6biqwWOkwPN34D+B+/qyqkGX50qLjW5OEXz2Is2omwR8Grgx\n2mLBkp7HzIY+t4xanMRadGz1bEmxqsG1wHUR9NsCoGrXyqRldhoBCIqutyuiLZ7vr3OZ2eKpY93p\nYNRC8qoGm9PxxnErk6/rIQWgm/q6qkG352zXKNItuhvBZ6t8nkYAutsTD8zqpY51p4PRECYxmjdX\nNfjLIfDezYA5dFzF+q7FWdWg2/O2awOKWW/vIC1e2gg+10Zb9FuwWxweGyi4LAoui0Id606PGQ0h\nEqvRcVWDCcCdwLUwYxK8970RPN7v523XcsBEitbPKsBlwAXA56Mt+v2cZja8uGVUU3mK9UZ0nGK9\nNnA9HVc1eKnfz50mHmxHEXx2AW6maP3cGm3Rr60tMxs8daw7HYxqQmIp0kWf5ckGC+i4kOjtEQzI\n7DO1axzpWp9G99tciuBzdbTF3IE4r5kNvjrWnQ5GFZFYkUVXNbifjtf3PNTbKdZ97Q9Xu5bO5260\nft4CXEVxzc/9vX4xNeOxgYLLouCyKNSx7qxkzEjS14APAQuB24GPRsSrpccnAueTKmeAv0TEfw92\nPvuTxPp0vHHcRhSrGnyPdOO4OQN2/tT1tglF8NkbuJsUfI4Fboi2WOILW83MFsegt4wkjQeuBLaI\niFcl/RG4OCJOK6WZCHwxIg7p4Vi1i+7w5qoGW9NxivVoOna5TY/gtS4P0h/5aNeKpNluB+Sfpel4\nzU+/XV9kZkNHHevOKlpGL5JufjZG0hvAGODRTtLVqqC6I7EcaZC/EXh2Bx4nBZ5LgROAWf2xqkG3\n+WjXSFJ3X6P1sx1wHSn4/BS409f8mFkdDXowiojnJP0QeAh4BZgUEZc3JwP2kHQbKVB9OSLuHOSs\ndkliTTpONNgKuI3U4vkFcFQETw9KXtq1LrA/M/kQW7EdKQhOAr4FXBNt8cpg5KNOPDZQcFkUXBb1\nNujBSNJGwBeA8cALwJ8kfTAi/lBKdguwXkS8LOldwHnApl0c71Rgdt6cA9zaeMPl7j6WbHsE8MaT\nwF5w1nth5W3gnWOAa+H/PQYzz4Cf/yaCV0rPf7r/zt+0PZal+TIjgP25l3czklV4C3/neaZxCr/g\nQZ4up9eJ6t/zD4Hthrrkp+LtCUCd8lPZNjBBGn6fh4i4Ov99dC6H2dRQFWNGRwD7RcQn8vZRwG4R\n8dlunvMAsGNEPNe0v9/7PSWWIXV1lVs+L1DMcpsC/LO/VzXoMj9p4sHWFF1vu5PWlptE6gK8Odpi\nsW9iZ2bDj8eMkruAb0paFphPWlRzWjmBpDWApyIiJO1CCprPLXqoJSexKmlVg0bwmZDzeC1wBvDp\nCB4biHN3mad2rUYql8Y1P6+Sgs//Aw6PtljiewmZmdVJFWNGt0k6nTSteSGpS+5kScfkx38FvA/4\nN0kLgJeBD/THufOqBm+h4xTrdYEbSC2eNuCGgVjVoNt8tWspYDeKWW+bAv8gBaBvA7N6mnjg/vCC\ny6Lgsii4LOqtpS96zasaTKBjl9tCOk6xnjFQqxp0R+3aiKLrbSJwH0XX23XRFn2a9u0PWsFlUXBZ\nFFwWhTp207VUMJJYgdTCaLR6diYN1pVXsX5woKdYd5rXdi0PvJ2i9bMcKfBcClwWbfHUYOfJzIYn\nB6N+JikgjqRo9WxCWtCzEXymRlDJzdzUrhGkteYawWcHUndgo/Uzw9f8mFkVHIz6WQ5G51G0em4Z\n6FUNus1Pu9amWGx0P+AZiuDzj2iLeQN2bndBvMllUXBZFFwWhToGoyF/P6MI3l3VudWu0aRWWaP1\nsy5wBSn4HB9t8VBVeTMzG0qGfMtoMKN7vuZnc4rgsydwB0Xr58Zoi0GfDGFm1hd1bBk5GPV0jnat\nAuxDcc1PUASfK6ItKhmTMjNbXA5G/WxAVmBo1yjSoqeN1s+WwDWk4DMJuLuOEw/cH15wWRRcFgWX\nRaGOwWjIjxn1B7VrPMU1P+8AHiQFn28AU6KtuNeSmZn1v2HZMlK7liNdaNpo/axMx2t+Hu/PfJqZ\n1YlbRhXJ1/xsSxF8diYtR3QpcCRwa7TFoCx8amZmi2rZlpHatQYdr/l5kWLc5+poi7mDltFB4P7w\ngsui4LIouCwKbhkNILVrGdLq243Wz4bAVaTgc0K0xQMVZs/MzLox5FtGnMixpOCzN/BPitbPDdEW\nr1eZPzOzOnLLaGBsT7rv0EeiLZ6tOjNmZtZ3Q75lVLfoXhX3hxdcFgWXRcFlUahj3Tmi6gyYmZm5\nZWRmNszUse50y8jMzCrnYNQiJE2sOg914bIouCwKLot6czAyM7PKeczIzGyYqWPd6ZaRmZlVzsGo\nRbg/vOCyKLgsCi6LenMwMjOzynnMyMxsmKlj3emWkZmZVc7BqEW4P7zgsii4LAoui3pzMDIzs8p5\nzMjMbJipY93plpGZmVXOwahFuD+84LIouCwKLot6czAyM7PKeczIzGyYqWPd6ZaRmZlVzsGoRbg/\nvOCyKLgsCi6LenMwMjOzynnMyMxsmKlj3emWkZmZVc7BqEW4P7zgsii4LAoui3pzMDIzs8p5zMjM\nbJipY93plpGZmVXOwahFuD+84LIouCwKLot6czAyM7PKeczIzGyYqWPd6ZaRmZlVrpJgJOlrkmZK\nul3SmZKW6STNTyTdK+k2SdtXkc+hxP3hBZdFwWVRcFnU26AHI0njgU8CO0TENsBI4ANNaQ4ENo6I\nTYBPAb8Y5GwORROqzkCNuCwKLouCy6LGqmgZvQi8DoyRNAoYAzzalOYQ4DSAiLgBWEnSGoOay6Fn\npaozUCMui4LLouCyqLFBD0YR8RzwQ+Ah4DFgTkRc3pRsHeDh0vYjwLqDk0MzMxtsVXTTbQR8ARgP\nrA2MlfTBzpI2bQ/daX+DY3zVGaiR8VVnoEbGV52BGhlfdQasa6MqOOdOwHUR8SyApHOBPYA/lNI8\nCqxX2l6XRbvyyM93kMokfaTqPNSFy6Lgsii4LOqrimB0F/BNScsC84F9gWlNaS4APgecLWk3Ulfe\nk80Hqts8eTMzWzyDHowi4jZJpwM3AQuBW4CTJR2TH/9VRFws6UBJs4B5wEcHO59mZjZ4hvQKDGZm\n1hoGdAKDpDckTS/9/Ec/HXe2pFX641hdHP9ESV8aqOObmUkaL+n2pn2V1D2SJkq6cIDP0W29PdDd\ndC9HxECsnjDQzTk3F82sCq1c93T72qpaDmi2pG/n1tJNknaQdKmkWY2xoxypJ0v6m6S7JP1C0iIT\nFiR9MS8rdLuk4/K+9sbfeft/JB2b//6KpGl5maETS2m+IeluSdcAmw10GZiZdUXSVZK+K+mGXC/t\nlfePlPT9Uh32qbx/oqR/SDpP0n35uUfldDMkvSWnO1XSLyXdmI97UCfnXiUf5zZJUyVtI2mEpHsk\nrZbTjMj19aqSVpf053yuaZL2yGlWzfX6HZJOZtHLdToY6GC0bFM33eF5fwAP5lbTZOBU4N3AbkB7\n6fk7k2bVbQlsBLynfHBJOwJHA7vk535S0gTgd8CHc5oRwBHAGZL2Jy0ztAuwPbCjpLfm4xwBbAcc\nmM/byt9QzKz+RkbErqTrMtvyvo+TZhfvQqr3PpmXWAPYFjgG2AI4Ctgop/sN8PnScdePiJ2Bg4Bf\natG1QduBmyNiO+DrwOkRsRD4PdC4JnRfYHq+ROfHwP/mc70vn4+c58kRsTXwV2D97l7sQHfTvdJN\nN90F+fftwHIRMQ+YJ+lVSSvkx6ZFxGwASWcBewF/yY8pb58bEa/kNOcCb42In0p6NgemNYFbIuL5\nHIz2lzQ9H2M5YBNg+Xyc+cB8SRfQQxQ3M1tCXX3hbew/N/++heKC3f2BbSS9L2+vAGxMWmLtxsYl\nMHkm8qSc5g7g7aVjnwMQEbMk3Q9s3nT+Pclf/CPiqtzCGUv6kn8+Kfh8DDglp98X2KLUcbW8pOWA\nt5IaGeQZ0s93VxhVXGfU8Gr+vRB4rbR/IUW+yv8s5cfKgo5BQ6Xn/IY0JXwNUiE2fCcifl0+SO7S\naz6OmdlAehZYuWnfKsAD+e9GvfgGHevqz0XEZeUnKa1I/mpp10I61rHd1fXN9Sp0UgdGxCOSnpT0\nDlLv0ZGltLtGxGsdDpCCU6/r0jrcz6i7zO6SZ5w0utqmlB4L4BrgMEnL5kh8WN4HqVn4TtKKD41v\nCJOAj+W0SFpH0uqkrsLDJI2WtDzwL7ibzswGUES8BDwu6e2QxmpIddaUbp42CfiM0iLTSNpU0pg+\nnFbA4Uo2At4C3N2U5hpyd1wOck/nvEL6kv974Jworgu6FDj2zRNI2+U/JwP/mve9i0UDbwcD3TJa\nttQlBvD3iPh6U5qgY8Vf/vtG4GekZuiVEfHXcpqImC7pVIoVHE6OiNvyY69LuhJ4vlFoEXGZpC2A\nqTlqzwU+lI/zR+A24CkWXRHCzGwgfBj4uaQf5e0TI+L+XD91Vi/+htRld0ue0PUUqSusuR4tKz8W\npEWqp5G6+I6JiNeUllVrpDkR+J2k20iLDpSXULqQ1D13Smnfsfk13EaKKf8APkMaezpL0pHAdcCD\n3RVEbS96zRH5SxFx8GI+fwRwM/C+iLivP/NmZjYUSToFuDAizu0xcefP3wn4YUS8rX9zVo9uuq50\nF+m7JWlL4F7gcgciM7MlJ+l44M/A1wbk+HVtGZmZ2fBR55aRmZkNEw5GZmZWOQcjMzOrnIORmZlV\nzsHIhjxJ/6uOC+NOygszNrZ/KOnf+3C8q/N6hc37LyotVbUk+R0h6SdKi/vOyItLbpAfa74Or6tj\n9Cqd2VDhYGStYArQWCl4BLAqaXHdht2Ba3tzIEkj6eKygog4KCJeXOLcptVE1oqIbSJiW9LKIS/k\nx3o7bXZApteaVcXByFrBVFLAAdiKtDDkXEkr5RWJtyBdsb6PpFtya+S3kpaGN29p8l1JN5NWHSbv\nH6G05P63SulWyUtU/VPSr/Py+JMkjc5pds7Hn6601H+Hm6dlawKPNzYi4rGImCPpuxQr3Z+Rj3ee\n0m1W7pD0ybyvQzpJG5TPI+nLktry38dKmql0O4Cz+qW0zQaAg5ENeRHxGLBA0nqkoDSVtNzJ7qS1\nCWcAI0lLmLw/t0ZGAf/WOATwTETsGBF/zPuWAv4A3B0RJ5TSNWwM/Cwvjz8HeG/efwrwybxa/QI6\nv3D7HODgHEx+kFeXJyKOJ690HxFH5bQfjYidSAtTHitp5U7SNa/vWG7ZfRWYkG8HcEy3BWlWIQcj\naxXXkbrq9iAFo6n570YX3WbAAxExK6c/Ddi79Pw/lv4W8CtgRkR8p4vzPRARM/LfNwPjJa0IjI2I\nG/L+M+l89eNHc36+Rlox+Yq8EnJnjpN0a34965FuedIbjfPOAM6U9EHS6s9mteRgZK3iWtJ9WLYh\n3SPreorgdF0n6cu3G4G0IGRD5Oe8Q4veeKyhvFx/8xL/5XN0KiJei4hLIuI/gG+Txo06Pjmtz7gP\nsFtETACmA6M7OdwCOn6Wly39fRDwc2AH4MY8JmZWOw5G1iquI93649lIngdWIrWMrgPuIbVeNsrp\njyKtLtyV3wAXA+f0tgKPiBdIY1W75F0f6CydpO0lrZ3/HkG6w/Ds/PDrjdsDkFZVfj4i5kvanHQ3\nYzpJ9yQwLo9nLUO+BUpe1Xn9iLgaOB5YkXRDSbPacTCyVnEHaRbd9aV9M0i3aH4u38X3o8CfJM0g\ntSZ+mdN1ukBjRPwvqTVyeq7YOzzcxfbHgZPzrVPGUMySKxsHXJAnHdxGuonaz/JjvwZm5AkMlwCj\nJN0JfIfUVUdzuoh4HfgWaZzsUuDOnGYkcEZ+vbcAP+6n2YBm/c4LpZr1I0nLRcS8/PfxwBoR0etr\nnMyGqypvO27Wig6S9DXSZ2s2cHSluTEbItwyMjOzynnMyMzMKudgZGZmlXMwMjOzyjkYmZlZ5RyM\nzMyscg5GZmZWuf8P/pOKbJK3bvgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "lab = [\"Employed\", \"Unemployed\"]\n",
+ "ms = pd.Series(male_sleeping, index=lab)\n",
+ "fs = pd.Series(female_sleeping)\n",
+ "ms.plot(color=\"green\", label=\"Male\")\n",
+ "fs.plot(color=\"blue\", label=\"Female\")\n",
+ "plt.title(\"Average time spent sleeping by gender\", fontsize=15)\n",
+ "plt.ylabel(\"Hours\")\n",
+ "plt.xlabel(\"Working Status\")\n",
+ "plt.ylim(ymin=8, ymax=10)\n",
+ "plt.legend(loc=\"best\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Average time spent per day on specific activities by gender."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "male_laundry = average_minutes(male, \"020102\")\n",
+ "female_laundry = average_minutes(female, \"020102\")\n",
+ "male_sports = average_minutes(male, \"1301\")\n",
+ "female_sports = average_minutes(female, \"1301\")\n",
+ "male_eat_drink = average_minutes(male, \"110101\")\n",
+ "female_eat_drink = average_minutes(female, \"110101\")\n",
+ "male_religious = average_minutes(male, \"1401\")\n",
+ "female_religious = average_minutes(female, \"1401\")\n",
+ "male_studying = average_minutes(male, \"060101\")\n",
+ "female_studying = average_minutes(female, \"060101\")\n",
+ "male_reading = average_minutes(male, \"120312\")\n",
+ "female_reading = average_minutes(female, \"120312\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "men = [male_laundry, male_sports, male_eat_drink, male_religious, male_studying, male_reading]\n",
+ "women = [female_laundry, female_sports, female_eat_drink, female_religious,female_studying, female_reading]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "label = [\"Doing Laundry\", \"Sports\", \"Eating & Drinking\", \"Religious\", \"Studying\", \"Reading\"]\n",
+ "men_categories = pd.Series(men, index=label)\n",
+ "women_categories = pd.Series(women, index=label)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "men_women_df = pd.DataFrame(men_categories, index=label)\n",
+ "men_women_df.columns = [\"Men\"]\n",
+ "men_women_df[\"Women\"] = women_categories"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Men | \n",
+ " Women | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Doing Laundry | \n",
+ " 3.577602 | \n",
+ " 16.132770 | \n",
+ "
\n",
+ " \n",
+ " Sports | \n",
+ " 23.917355 | \n",
+ " 12.148622 | \n",
+ "
\n",
+ " \n",
+ " Eating & Drinking | \n",
+ " 68.508580 | \n",
+ " 64.997007 | \n",
+ "
\n",
+ " \n",
+ " Religious | \n",
+ " 7.223202 | \n",
+ " 10.002557 | \n",
+ "
\n",
+ " \n",
+ " Studying | \n",
+ " 15.567393 | \n",
+ " 14.136000 | \n",
+ "
\n",
+ " \n",
+ " Reading | \n",
+ " 15.490346 | \n",
+ " 22.873709 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Men Women\n",
+ "Doing Laundry 3.577602 16.132770\n",
+ "Sports 23.917355 12.148622\n",
+ "Eating & Drinking 68.508580 64.997007\n",
+ "Religious 7.223202 10.002557\n",
+ "Studying 15.567393 14.136000\n",
+ "Reading 15.490346 22.873709"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "men_women_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFaCAYAAAA0OdsjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4JFWd//H3BxAJIw4IDojIgIpiRFFWBXVAQFDEjLIG\nMPszYVpFV5fR1RXQdc2rAjJjxDWLkRGJgkgaDIRRmBEQZkiCRAnz/f1xTs+t6em5qatvdZ/6vJ7n\nPrdPdXf1OV3V9a0T6pQiAjMzs+lap+kMmJnZaHMgMTOzvjiQmJlZXxxIzMysLw4kZmbWFwcSMzPr\ny5QCiaSlklZKevCgMjSsJN1L0nxJj+1aPjd/J89qKm/DSNJ7JD296XxMlaTrJB3WdD6GhaTXS3pu\nj+XLJB05xXWdLOk7lfTekg7p8boFks6eXo6nlJ/5kq4d9Oc0SdJ++fj0oEF+zqQDiaQnA9sCtwMH\nDixHw+vewH8Aj+1afhXwJOA3M56j4fYeYOQCCRD5z5LXA2sEkrzsM1Nc1xuBQyvpvYG393jdh4GD\nprju6fK2rsF6U3jtgcBfgFPy448MJEddJG0YEbfPxGdNkqqJiLgT+F1DeRlmQdd31QRJ946Ifzad\njxG3xnaMiAumupKIuHiSr7tsquvuQ+P76CiY8DgcERP+AesCy4HDgX2BlcBj8nMbA7cCb+rxvrOB\nr1XSDwKOA67P7/kFsEPl+bl53f8KfBX4O3BCfu6VwOn5vTcAvwZ27vGZbwGuAG4BfgA8I6/zaZXX\nrEM6M/oLcAdwCfDKCb6DlT3+HlTJ87Mqr10GfDx/xtXAjcB/5+f2By4EbgK+D8zu+pzNgC/n7/t2\nUk1nlwnydi/gE8Bfc3n+ltd9r/z8wTmPTwBOA27LZX5ej3U9Fzgnf/bVwBHAepXn5wPXAjsBv83b\n8Txgt67yd39XT1tL3ufl5/cCfpK321+BN/R47VNJJzK3Atfl72lW5flOOZ8InJzL+e/jfG9PAy7I\nZT0HeEou239UXvNsYBGwIm+zM4G9Ks8/In/m07vWPSuX5a0T/K7mA5fn7fZH4MCu1ywg/Y72An6f\n13ka8IgJ9omNgM8BF+fv67Kcvk+PPLwPWJLzcAVwbH7u5B7b8ZXVfbzyvf8TuG/Xuh+Z37NHZX3f\nqexH3ev+SrXMXesa99iRX/M+0m/6dtLv5+fAnHG+o/l5ez+FtA/fDpwP7Fp5zZHApT3e2ynz/cZZ\n/2OAM/J6/wg8K+9nx05zv34UaV+8BbgIeP5aynQN8A9gIelYuhJ4UOU1G+RyXZG3+WJg3671LCMd\nUz4IXAncOe7+Nt6TlZXumTOzC+mg9XfgY5XnjwNO7nrP9lQOsKQD5OXAucCLSD/Q0/KyDfJr5ub3\nXAV8lhQE5uXn/gN4A7AH8Mz8Jd0GbFf5zOfn93825/lD+Qu5h9UDyeeBm4F35/UdDtwNPHuc72Be\nXveH8vewC7A+vQPJ0ryRvkuqvr8/v+Z/STvs8/IGvgH438r77p2f/wvw8lzOH+adYrwfxH/k7+wV\nwG7Ai4GvVL7Xg/PnXwq8M6/3u8Bd5BOC/LoD8vfwufz9vTFv64937ai3kg7ABwH7kA6u1wAb5tfs\nlN/35cp3dZ8JvtfLSbXcvfL3tLK6PYBdST/cb+XPfDlpB/9Ojx/cX4B3kJrWdlrL5z4gl+NE0g/8\ndaSD7a2sHkjeDBySt+MzgP/O39FTKq85gzUPDq8i/Ug3HWe7fRS4M+8fewFfyvl/aeU1x5KC2Pl5\nuz6HdBLwhwl+s5sDX8zveSrwMtIJzC+6Xnd0/l4/nMt3AHBcfm7H/J7jK9vxfpV9/Mj8eHYu68Fd\n6/4wab9UTp8E/F9+vDXw9fx8Z93b5ecWAL+rrGcyx45Xkn4nb8zlfT6p6W37cb6j+YwF2dcC++U8\nrvq9AQ+j94nCKVT2vR7r3oh0InYu6eTspaSgvoIcMKexX/+etD/uCfw4v2/ryusOIR3rPpz3py/m\ndd3D6oHkJzkfb8jrOop0LHhs1zHsKuCE/L2scdK5WnknCiJ5pccAV1TSXweWVtLPI/24tqosex8p\nuq6b0/9Jiv6zK6+ZTTpbf1NOz81f2PcmyM86pGa5i4APVpafDRzf9drPUzkjBh6Sv9iXd71uIZWd\nt8dnzqJyRlZZ3slzd41kCfkHlJedlTfWtpVlRwDLK+nX5J3jwZVl65IOjEeOk7fjgU+M83xnRzy0\nskz5+/tWJf1X4Jiu976KFLA3rfz4VpIDfF722LzsmZVlq53Zj5O3efm9X+xafgJwZiV9GnBi12t2\nz+99RFc511oLqLz3yJzHDSrLOmdvPfNd2e9+Uf2e8na7Gdi4suxU8kFzLevajHQQ+2DX8p8CF1fS\nC/J+U90nnpvzucNE5ay8Zz3SQWsl8MC87OE5/ZZx3nc2lQNfZfmqQJLTPwR+3vWaS4DPVNInV78T\n0hnv0h7rXkClRsLkjh2fA7472e+ja1+uBu6NSbWe6onyacCCSnp70jHkWeOs+82k33L1mPhEKjWv\naezXB3ftP3eRa+6k48RVwOd7/I5W1UgYa6HZret1p3Rtm2Wklo31J/NdTtjZLml94AV5R+n4PrBt\n7oCH9MO6hXT20/ES4AcRcU9O7wn8CrhZ0nqS1svvOY/U5FL10x752FHSDyQtJwWtO0lnCw/Nz69H\nOhP+cddbj+9Kd77IH3Xykd/7a2AnSXW0mQaphhaVZZeSfjR/7Vq2Rf58SN/RucCySr5EOih1f0dV\ni4GDJf2bpMeMU4YfrMpgytuPSGeCADsA2wDf6fpeTiJVhR9VWc+dEXFyJX1R/r/1OHmcyA96pHdW\nshFpQEN33n5D+jHt3PXeNfafHnYBFkXEHZVlP+x+kaQHSloo6cr8WXeSaicPrbzs//L/F+f3PJh0\n0D52nM9/FLAh8J2u5f8H7CDpfpVlSyPi0kq6830/cJz1I+kVks6XdHPO92n5qR3y/93z/wXjrWeS\nvg08Q9Jm+bN3In1H365h3ZM5dpwPPCuPxNpF0rpTWH/1d3Erqflol8rzxwAvzPshpAP7ctJxb22e\nCJwTEVdX1n02qSYAwDT26xMq67qB1ArQ+c1tA2xJ+k33LFu2Z877mT2Of9VjTJAC3J3jlHGVyYza\n2he4L3CipNmSZpPaxv9JHr2Vf4w/IgUPJD2M1D54XGU9m+fnOz/Gzt881vxBrKgmJN2H9CVuTWqy\n2I20oS4gHeQ661+XdOZS1Z3uvO6mrnwcm5dvNe63MXk3dqXvXMsykZrIOnl7Emt+Rwcz/kHjI6Sa\n15tIQeVySW/r8bprutLXMlbezfP/n3V99mWknWqbyvturq6ksrNtwPR15+0a0ln05sCmpG3zha68\n3ZFfs03Xe1cwsTndnxkRt5EOUABIWod0YvIkUlvxPNJ+93MqZY2Im0kB4FV50cGkZo3xDjSd7707\nr530ZpVlvfYbGOf7lvR8Ui37N6TmoH8hNfdU33c/4NaIuGXNNUzZ8aT99oU5/RJSK0Ydoxknc+z4\nCqmJ8ADS8Wm5pP/M23A8t8SagzGqvwtIwX4l8JJ8knYQ8NWIWDnOerdkzWMPXcumul/32g8623LL\n/L/X76hq8/za7u/yMCY4Do9nMqO2OkN9v9/juRdLenv+Qr8NHC9pG9JGv4YU5TquJ3U4/WeP9dzc\nlY6u9JNJQeQZEbGkszAHtY7rSNXNLbre252+gdzGTdo5ug1yXPlEtZ3rSZ1xb+zx3FpHHuUfwmHA\nYZIekt//KUmXRMQvKy+9P6nvopq+Kj++If9/HensrtuyCfLer/v3SN9N2q4bkfaJw0iBrttVXenu\n/aeX5aRgsko+Q5xVWfQQUi13n4g4oet13Y4GTs/f/ytJB5rx8tE5U+3eJp083VBZNp1a8ouB30bE\nW1atZM3req4HNpY0q99gEhG3SPop6bd/FOmA3l3bmq4Jjx35u/4Uab/fmtTX8FFSH8GXxln3rB4j\n+6q/CyLiVknHkU4QLicd4MerbULavg/rsby6n9/I1Pbr8Szvsf5e6RtITVa9hnR3m8zvCJggkEja\nmNS5901Sx2nV44FPkjqrf0WqDt5I2oEOILVXVjNyYl5+YVdzwmRsmP+vqmZJegrpupazASLibknn\nk/prjqq8d/+udf2adBYwOyJ+NYU81HHWPdGGOZHUbHJFREwroEXEXyT9G6mNdkegGkheAHwMVp1t\nP5exocuXkHaw7SLimOl8dpc7Gdtuk/ECVs/r80lNAwHcKum3wMMjoq5h52cDr+4a1vj8rtf02u+2\nJTVbLa6+MCLOlHQJ6QCzDRM3F/2R1Pd0AKsfIA8ALomI66urn7A0a9qgmu/sZV3pzoneQaQabS9T\n2Y7HAd+W9BxgO1ZvkYA1y1E9ox7PlI4dEfE34AhJryL9BibyAlJnN5JmMdZRXXUMqaZzGKnvbgnj\nOxv4V0kPiIir8rp3oXJgzwGqrv36ClIweR6VJjBS2ap+RRpwc2tEXNLnZ64yUY3kuaSd6NO5fW8V\nSWcA/06qsfwqIu6S9H3gXaSq0//rWtcnSWcJv5b0WVK0nUMaWXNaRHTvdFVnkpocjpL0cVIV7DDS\nga96tvYx4Ht5/ceTfvCdK85XAkTEJZK+CByXr8w9l7QzPxJ4aES8rlcGIuJOSUtJ1dsLSdXPtY2l\nX9sZ5ERnll8l1SZOlvQJUofm/UjttVdHxKd6rlT6Aakms5g01PBFpGB5atdLXyPpTuBPpFEq25Ob\nIyNipaR3AV+TtAmpWebO/JrnAi+c4gnAxcCzJf2C1Kl88QRnvftI+kjO8wtIbbnVk4D3kJpXVwLf\nI52JPoi0ff89Iv48hbxBOnt9M/ATSf9DGsV1KOn7q5bhSuC/JX0Q2ITUQXslvbflMaRh32dMdKCJ\niBskfQr4gKS7SfvhC0hNyS/tevl0aiSLgM9Lej/pZOFZpJO+ah4ukfRlUvnuT+pDmU3a1p2WiIuB\nZ0ram3Q2e1lun++Vp5+RguOX8uvO6VGO6vsuAuZIOoi0T17b1YfYMeGxQ9KXSDWXs0jN1ruT+mje\nM96XRNreH80B5GrSSM71gE9XXxQRv5P0J1Kz+usnWCekE4oPkPavD5Fq1fNJLR7VlpB+9utV32VE\n3JOPZ5+QdB3pUokXkgZUVMuxSNIvgUWSjiCNytuEVPO+d0S8v3vdkzJeTzypffjicZ7/PGnn6lyv\n0OnIvmItr9+K1Ja5nHQgXko6eO6Yn5/LWkZDkIas/oG0oy4mDZU7ia6RMYxdR3IraZjbi6hc91J5\n3SGks8I7SM1wJ9E1kqtHHvZi7LqDexi7jmS1PNM1oiUvO5auUWGkqvI9wEaVZZuQDnKXk5qzOsOI\nnzxOvt5NOgO6kTR08UzgOV2f07mO5PSc/0voPQ59H9LB/BbSD/I80nDCzui7w4BrerxvJZVriUg1\n1s4JwGrDr7veN4+x60h+lrfb5cAbe7x2F1L/xE15vX8ijfzZZG3f5wTb8+l5e96Ry9nrOpInkA5O\nnWtvXtlrW+bXPiSX5dWT/Px1GLuO5J/0vo6k136zxj63lnV/nLHrX76Tv7/ufXUd0gjLSyv729GV\n57djrLWheh3JGvt4Xv61/Bkf7fHcar9X0nD3r+Q8Vq8j6VXmiY4dBzF2ndmtpGPEqyb4/g8j/fZ3\nJTXn3pH/77aW138k73ezxltv5fWPIfVR3UEKmvvnfeiTdezXvbYB6bfauY7ka6QT/e7hv+vn/e7P\neZtfTfrt7Tveusf764zvrkXuZK/WLLYndVJ+ndSHsi2prf2AiOjuOBoISR8g/VA2i5Ze4SzpYNKP\ncFakDuWhIWkeqYnlURFxYcPZ6YukN5GGdG8V9XRg2xCR9Dvgoog4aJrv344USF4XEQtrzVzDpjJF\nyoQitbk9Dla1wf+NNPzsUNJQyyMlvTenD13riqZJ0uakkRsnkc4gn0qqOh7d1iBigydpLmlI7ftJ\nFyY6iBRE0hNIrS1PYM0m+/He9z5SM9xfSa0X7yPVFr43gGw2qtZA0mVP4C8RcYWk/RmbwG8h6cKk\n2gMJY9eWvII0ZPkqUjPRBwfwWaOmvqpn/YY5b5Mxn9SEcDLe10r0O9LIukMj4twpvG8ladaJB5Ca\nkE4F3l3iiUatTVurrVj6CmnUzRck/T0iNs3LBdzQSZuZ2WgbyI2tlK6Gfw49xpFHilyjfgZqZmbZ\noJq29gXOjbFrIVZI2jIilkvaijWvtkSSg4uZ2TRERKPT4Q8qkBxIvsAn+zFpeN4R+f8acxrBzH4Z\nkuZHxPyZ+ryZVnL5Si4buHyjbqbLNwwn4bU3beWr4fdk9SlVDgf2krSEsWnbmza36QwM2NymMzBA\nc5vOwIDNbToDAza36QwM2NymMzDTaq+RRJo9c/OuZTeQgouZmRVmIJ3tI2JB0xkYsAVNZ2CAFjSd\ngQFb0HQGBmxB0xkYsAVNZ2CmDWz471RJiqY7jGxm9dO2633FLBmGY+cgL0gcapLmxeo3ZyrK6JRv\nOrGk7BgyOttuTcPQ8VuypgPG2rQ2kJjZYEx0sBvlQDkZgyrfMAdpN21ZY9IPY3o1Eu8rw8m/48FZ\n23c7DN95mzvbzcysBq0NJHn68mKVXr6Slb7tXL7ytDaQmJlZPdxHYo1xH0l5un/HM9FBPJl9QdIy\n0l0WHxAR11eWnw88FpgbEZcPLJM1cB+JmbVYDPBvSpm4jDQPIACSHg1sONUV2ZpaG0hKb8csvXwl\n87YbmK8Dr6ykDyLd910Aku4t6ROS/ippuaT/lbRBfm6epCslvVPSCklX5VtYr6GN26+1gcTMWue3\nwCaSHi5pXeAlpOACKZgcDjyE1NT1EGBr0h0OO+YAm5DuePga4POS7jtDeR9q7iOxxvTTRzJd3scG\nq3cfySCPMZPrL5O0FHgt8CRgY9Jtb98BPAu4C9ge+CPwmIi4LL/nycA3ImL7XMv4GTArIlbm51cA\nz4mI39VerN5lGNo+El/ZbqNp/gy9x0oSwNeA04DtqDRrAVsAGwHnpruBQ36u2mpzfSeIZLcBswaZ\n4VHR2qat0tsxSy9fybztBiePzLqMdBfX6j2TrgNuBx4REZvmv9kRsclUP6ON26+1gcTMWus1wB4R\ncXtl2UrgKOBTkrYAkLS1pL2byOCoaW0gKXnSOCi/fCXzthusiLgsIs6rLsp/7wX+AvxW0k3AImCH\nrtdNZv0n15TVkeHOdmtMX53t86fxtvnubB+0Yb0gsQTD3Nne2hpJ6e2YpZevZCVtu4hQ9x+we6/l\n0/1ruozdStp+k9XaQGJmZvVw05Y1xk1b5fHveHDctGVmZsVqbSApvR2z9PKVrPRt5/KVp/ZAImm2\npO9KukjShZL+RdJmkhZJWiLpBEmz6/5cMzNrxiBqJJ8GfhYROwKPAS4GDgUWRcQOwIk53ajSx3qX\nXr6Slb7tXL7y1BpI8kyYT42IrwBExN0RcROwP7Awv2wh8Lw6P9fMzJpTd41kO+BaScdKOk/SUZI2\nBuZExIr8mhWk6ZgbVXo7ZunlK1np287lK0/dgWQ94PHAFyLi8cCtdDVjRRpvPBxjjs1soCRF9x9w\nUq/l0/2bZD7eJ+lnXcv+vJZlB9T4FbRC3dPIXwlcGRFn5/R3gfcByyVtGRHLJW0FXNPrzZIWAMty\n8kZgcae9sRPl60p3lg1q/U2nR6V8YzrZnje59NKc3I6ppbNhKX+vdEScPEz5mUq6Y7X0fAZn/uqf\nN87v4R/A09S56EJ6AWkK+J0krQM8DdgMeDBw6rBuv8rjg3Ny2WS+pkGr/YJESacCr42IJZLmk+b4\nhzSX/xGSDgVmR8ShXe9r/KIam1nyBYnF6f4dS4pBB5LJbFNJ6wN/B3aLiPNzrWMf0g2t3hkR5+Vl\nHwGeDnwJ2BW4ATgiIo7O65kPPBK4A3gu6UD+QuBFwNvz8tdGxKL8+vsCnyRNW78SOBY4LCJWKt2q\n97XAmaQZiW8E3hQRv1hLGVp1QeJbgW9IuoA0auujpFtY7iVpCbBHTjeq9HbM0stXMm+7+kXEncBZ\npCABqQZyGnB6flxd9m3gcmArUoD4L0m7V1a3H+mmWJsC55NmCYZ0C97/ZGxgEcAC4E5STedxwN6k\n4NGxC2lk6/2AI4Fj+ipoQ2oPJBFxQUQ8MSIeGxEviIibIuKGiNgzInaIiL0j4sa6P9fMbAKnMBY0\ndiPdbve0rmWnAE8B3hsRd0bEBcDRwCsr6zk1IhZFxD2k5vv7AYfn9LeBLSVtImkOqSbyjoi4PSKu\nBT4FvLSyrr9GxDG57/irwFaS7l9/0QertbfaLX2sd+nlK5m33cCcCrxZ0qbAFhFxqaRrgYV52aNI\ntYMbIuLWyvsuB55QSVf7eG8HrouxPoLOzbJmAQ8E7gVcrbHb966T19exvPMgIm7Lr5vFWvqRh1Vr\nA4mZtc5vgfsCrwN+AxAR/5B0FfB64G/AVcBmkmZFxC35fQ8iDSSaqiuAfwL3i9Xv9V4cz7VVqNLL\nVzJvu8GIdGvdc4B3kmonHad3lkXElcAZwMck3VvSY4BXA1+fxuddDZwAfFLSfSStI+nBkp420XtH\nTWsDiZm10inAFqTg0XEasDljweVAYC6pdvJ94D8i4tf5uV7XwY2XfiWwPnAhaQTYd4Atp7CukeD7\nkVhjPPy3PD2H/w5YW7bpMA//dR+JmQ1M0wc4mxmtbdoqvR269PKVrPRt5/KVp7WBxMzM6uE+EmuM\n+0jK49/x4AxzH4lrJGZm1pfWBpLS2zFLL1/JSt92Ll95WhtIzMysHq0d/lv6fEall69ko77tJnPt\nSGXuqSKVXr5urQ0kZla/pjt9rRmtbdoqvR2z9PKVrPRt5/KVp7WBxMzM6uHrSKwxvo7ErH/DcOx0\njcTMzPrS2kBSejtm6eUrWenbzuUrT2sDiZmZ1cN9JNYY95GY9W8Yjp2ukZiZWV9aG0hKb8csvXwl\nK33buXzlqf3KdknLgH8A9wB3RcQukjYDvg1sCywDDoiIG+v+bDMzm3m195FIWgrsHBE3VJYdCVwX\nEUdKei+waUQc2vW+xtv5bGa5j8Ssf8Nw7BxU01Z3ofYHFubHC4HnDehzzcxshg0ikATwK0nnSHpd\nXjYnIlbkxyuAOQP43CkpvR2z9PKVrPRt5/KVZxCz/+4aEVdL2gJYJOni6pMREZOZZtrMzEZD7YEk\nIq7O/6+V9ANgF2CFpC0jYrmkrYBrer1X0gJSZzzAjcDizr0ZOlG+rnRn2aDW33R6VMo3ppPteZNL\nL83J7ZhaOhuW8vdKR8TJw5Qfl2+4ypcfH0yyjCFQa2e7pI2AdSPiZkkbAycAHwL2BK6PiCMkHQrM\ndme7ubPdrH/DcOysu49kDnCapMXAWcBPIuIE4HBgL0lLgD1yulGlt2OWXr6Slb7tXL7y1Nq0FRFL\ngZ16LL+BVCsxM7PCeK4ta4ybtsz6NwzHztZOkWJmZvVobSApvR2z9PKVrPRt5/KVp7WBxMzM6uE+\nEmuM+0jM+jcMx07XSMzMrC+tDSSlt2OWXr6Slb7tXL7ytDaQmJlZPdxHYo1xH4lZ/4bh2OkaiZmZ\n9aW1gaT0dszSy1ey0redy1ee1gYSMzOrh/tIrDHuIzHr3zAcO10jMTOzvrQ2kJTejll6+UpW+rZz\n+crT2kBiZmb1cB+JNcZ9JGb9G4Zjp2skZmbWl9YGktLbMUsvX8lK33YuX3laG0jMzKwe7iOxxriP\nxKx/w3DsdI3EzMz60tpAUno7ZunlK1np287lK0/tgUTSupLOl3R8Tm8maZGkJZJOkDS77s80M7Pm\nDKJGcghwIWON34cCiyJiB+DEnG5cRJzcdB4GqfTylaz0befylafWQCLpgcCzgKOBTufP/sDC/Hgh\n8Lw6P9PMzJpVd43kf4B/A1ZWls2JiBX58QpgTs2fOS2lt2OWXr6Slb7tXL7y1BZIJO0HXBMR5zNW\nG1lNpLHGwzHe2MzMarFejet6CrC/pGcBGwCbSPoasELSlhGxXNJWwDVrW4GkBcCynLwRWNxpb+xE\n+brSnWWDWn/T6VEp35hOtudNLr00J7djaulsWMrfKx0RJw9Tfly+4SpffnwwyTKGwEAuSJT0dODd\nEfEcSUcC10fEEZIOBWZHxBod7sNwUY3NLF+QaNa/YTh2DvI6ks4R4nBgL0lLgD1yunGlt2OWXr6S\nlb7tXL7y1Nm0tUpEnAKckh/fAOw5iM8xM7Pmea4ta4ybtsz6NwzHztZOkWJmZvVobSApvR2z9PKV\nrPRt5/KVp7WBxMzM6uE+EmuM+0jM+jcMx07XSMzMrC+tDSSlt2OWXr6Slb7tXL7ytDaQmJlZPdxH\nYo1xH4lZ/4bh2OkaiZmZ9aW1gaT0dszSy1ey0redy1ee1gYSMzOrh/tIrDHuIzHr3zAcO10jMTOz\nvrQ2kJTejll6+UpW+rZz+crT2kBiZmb1cB+JNcZ9JGb9G4Zjp2skZmbWl9YGktLbMUsvX8lK33Yu\nX3laG0jMzKwe7iOxxriPxKx/w3DsdI3EzMz60tpAUno7ZunlK1np287lK0+tgUTSBpLOkrRY0oWS\nPpaXbyZpkaQlkk6QNLvOzzUzs+bU3kciaaOIuE3SesDpwLuB/YHrIuJISe8FNo2IQ7ve13g7n80s\n95GY9W8Yjp21N21FxG354frAusDfSYFkYV6+EHhe3Z9rZmbNqD2QSFpH0mJgBXBSRPwJmBMRK/JL\nVgBz6v7cqSq9HbP08pWs9G3n8pVnvbpXGBErgZ0k3Rf4paTdu56P1KRhZmYlqD2QdETETZJ+CuwM\nrJC0ZUQsl7QVcE2v90haACzLyRuBxRFxcn5uXl5vLenOskGtv+n0qJRvTCfb8yaXXpqT2zG1dDYs\n5e+VjoiThyk/Lt9wlS8/PphkGUOg1s52SZsDd0fEjZI2BH4JfAh4JnB9RBwh6VBgtjvbzZ3tZv0b\nhmNn3X0kWwG/zn0kZwHHR8SJwOHAXpKWAHvkdKNKb8csvXwlK33buXzlqbVpKyL+ADy+x/IbgD3r\n/CwzMxsOnmvLGuOmLbP+DcOxs7VTpJiZWT1aG0hKb8csvXwlK33buXzlaW0gMTOzeriPxBrjPhKz\n/g3DsdOlucggAAAXE0lEQVQ1EjMz60trA0np7Zill69kpW87l688rQ0kZmZWD/eRWGPcR2LWv2E4\ndrpGYmZmfWltICm9HbP08pWs9G3n8pWntYHEzMzq4T4Sa4z7SMz6NwzHTtdIzMysL60NJKW3Y5Ze\nvpKVvu1cvvK0NpCMCkkxnb+m821m7eE+kiE3vX4EjURfgPtIzPo3DMdO10jMzKwvrQ0kpbdjll6+\nkpW+7VpQvmk1R49yk3St92w3MzOm3fQ6qlpbI4mIk5vOwyCVXr6Slb7tSi9fG7U2kJiZWT1aG0ha\n0E47r+k82PSUvu1KL18b1RpIJG0j6SRJf5L0R0lvy8s3k7RI0hJJJ0iaXefnmplZc+qukdwFvCMi\nHgk8CXizpB2BQ4FFEbEDcGJON6r0dtrSy1ey0rdd6eVro1oDSUQsj4jF+fEtwEXA1sD+wML8soXA\n8+r8XDMza87A+kgkzQUeB5wFzImIFfmpFcCcQX3uZJXeTlt6+UpW+rYrvXxtNJDrSCTNAr4HHBIR\nN0tjV+9HxFovvJG0AFiWkzcCizvV4M7OV1ca2ElSbesbVHpMJ9vzJpkuvHxLc3I7ppbOhqX8TpeZ\nHuT+mR8fnF+6jCFQ+1xbku4F/AT4eUR8Ki+7GJgXEcslbQWcFBEP73pf4/PFDCPPtdXznZ5ry4aW\npJjJ/XMYjp11j9oScAxwYSeIZD8GDsqPDwJ+WOfnmplZc+ruI9kVeDmwu6Tz898+wOHAXpKWAHvk\ndKNKb6ctvXwlK33blV6+Nqq1jyQiTmftwWnPOj/LzMyGQ2uvbC99LHvp5StZ6duu9PK1UWsDiZmZ\n1aO1gaT0dtrSy1ey0rdd6eVro9YGEjMzq0drA0np7bSll69kpW+70svXRq0NJGZmVo/WBpLS22lL\nL1/JSt92pZevjVobSMzMrB4DmbRxRJxUnUxyKpqe12Yy3A49ukrfdqWXr43aHEimPfGfmZmNcdNW\nodwOPbpGZdtJiun+NZ33ySi5bHVrd43EzPo0zdsAjIzSy1cP10gK5Xbo0eVtZ6PGgcTMzPriQFKo\nUWlntzW1Ydu5/6Es7iMxs5k3f4beYzPCNZJCuZ19dHnb2ahxIDEzs744kBSqDe3spfK2s1HjQGJm\nZn1xZ3u5pjWX2CjMI1Y695HYqHEgKdn8Ab/ezAw3bZkNHfeR2KipNZBI+oqkFZL+UFm2maRFkpZI\nOkHS7Do/08zMmlV3jeRYYJ+uZYcCiyJiB+DEnDaztXAfiY2aWgNJRJwG/L1r8f7Awvx4IfC8Oj/T\nzMyaNRN9JHMiYkV+vAKYMwOfaTay3Edio2ZGR21FxLgTr0laACzLyRuBxZ1qfufHVVcagKXAdpXH\nTCI9ltda87O29JhOtudNMl14+SZbnobLN81037eB9vYrt3z58cH5pcsYAoqod0JNSXOB4yPi0Tl9\nMTAvIpZL2go4KSIe3uN9MZPXMEiK6U4cN+P5nPLNdXL25k/xbfNHoWwAmvakf6NwnUzZ+yaMyvYb\nlfLN9LGzl5lo2voxcFB+fBDwwxn4TDMzmyF1D//9FnAG8DBJV0h6FXA4sJekJcAeOW1mZoWotY8k\nIg5cy1N71vk5ZmY2PHxlu5mZ9cWBxMzM+uJAYmZmfXEgMTOzvngaebMBGe/iW7OSOJCYDdQ0L2gz\nGyFu2jIzs744kJiZWV8cSMzMrC8OJGZm1hcHEjMz64sDiZmZ9cWBxMzM+uJAYmZmfXEgMTOzvjiQ\nmJlZX0Z+ihTPZ2Rm1qyRDySJ5zMyM2uKm7bMzKwvDiRmZtYXBxIzM+uLA4mZmfVlxgKJpH0kXSzp\nz5LeO1Ofa2ZmgzUjgUTSusDngH2ARwAHStpxJj7bzMwGa6ZqJLsAf4mIZRFxF3Ac8NwZ+mwzMxug\nmQokWwNXVNJX5mVmZjbiZiqQ+OpzM7NCKWLwx3hJTwLmR8Q+Of0+YGVEHFF5jYONmdk0RESjU3XM\nVCBZD7gEeAZwFfA74MCIuGjgH25mZgM1I3NtRcTdkt4C/BJYFzjGQcTMrAwzUiMxM7Ny+cp2MzPr\nSyHTyE9M0rnAV4BvRsTfm87PoEjaDHhgRPy+6bzURdJnSSP/Oh2KAfwDODsiftRYxmoiaTdgcUTc\nIukVwOOAT0fEXxvOWi0kvYs1t99NwLkRsbixjNVE0vGsZf8EvhQRdzSVt5nSphrJS0nXrpwt6ThJ\nz5RUxE1JJJ0iaZMcRM4Fjpb0P03nq0YbADsBS4A/A48FHgi8RtKnmsxYTf4XuFXSY4F3ApcCX202\nS7XaGXgj8ADSb/ANwL7AUYVMl7QUuAX4MnAUcHP+2yGni9e6PhJJ6wD7kX68K0m1lE9HxA2NZqwP\nkhZHxE6SXgtsExGHSfpDRDy66bzVQdJZwK4RcXdOrwecDuwG/CEiRnq6HUnnR8TjJB0G/C0ijpZ0\nXkQ8vum81UHSacC+EXFLTs8CfkaaMuncArbfORHxhF7LJP0pIh7ZVN5mSptqJOQzvk8CHwe+B7yY\ndObw6ybzVYN1JW0FHAD8NC8r6QxhNjCrkp4FbJYDSwnNBjdLej/wcuAneW66ezWcpzptAdxZSd8F\nzImI2yhj+20sadtOIj/eOCfv7P2WsrStj+Qm4GjgvRHxz/zUbyXt2lzOavFh0tDq30TE7yQ9mNQE\nVIojgfMlnZLTTwf+S9LGwK+ay1ZtXgL8K/DqiFgu6UHAJxrOU52+AZwl6YekfoTnAN/M2+/CRnNW\nj3cBp0m6LKe3B96Uy7ewuWzNnFY0beXmrEMj4r+azssgSNotIk6faNkok/QA0uSfQepkv6rhLNkU\nSHoisCtp+/0mIs5pOEu1krQB8HBS+S5pQwd7VSsCCaQaSUTs3HQ+BqHTxt61rJg2dgBJWwNzSbXo\nAIiIU5vMU10k3cJYU+T6pGatWyJik+ZyVa/cXLclq2+/yxvNVI0kPQXYjtXLV9KAiXG1pmkLWCTp\n3cC3gVs7C0e8k/3JwFOALSS9k7Hhh/chzSBQBElHkJp/LgTuqTxVRCCJiFX9P7n2vD/wpOZyVC9J\nbwUOA65h9e1XymCQr5OasxazevlaE0jaVCNZRo8O6IjYbuZzUw9JTwd2Jw2n/GLlqZuB4yOiiH4S\nSUuAR1f6tYrXGYnXdD7qIOlSYJeIuL7pvAyCpIuAR0RbDqY9tKZGEhFzm85D3SLiFEm/IR1kP9R0\nfgboUlKTT5GBRNILK8l1SNdd3N5QdgbhctIFeqX6I7AVaULaVio+kOQf6VrPFCLi+zOYndrlCTG3\nlqSCz4huBxZLOpGxYBIR8bYG81Sn5zC2j94NLKOsO4guBU6S9FPGhsNGRHyywTzVaQvgQkm/Y/X9\nc/8G8zSjig8kjP1I70/qT+hcM7I7cAYw0oEkWwz8SNJ3gNvyshj1IFnx4/xXVUzQjIiDm87DgF2e\n/9bPf6Kg7QfMbzoDTWtTH8ki4JURcXVObwUsjIi9m81Z/yQtyA9X25gR8aqZz41NlaRtgM+QrtSH\nNIjgkIi4srlcmU1emwLJxcCOneafPDrmwoh4eLM5s7WR9J2IeLGkP/R4OiLiMTOeqQGQ9CvSRXtf\nz4teBrwsIvZqLlf9k/TpiDgkT2rYbeSbfiT9JiJ27Rq+3RElDd+eSJsCyedIk6h9k1S1fgnw54h4\na6MZq0GpZ7SSHhARV0ma2+PpKGh23Asi4rETLRs1knaOiHMlzevxdETEKT2W2whqQx9Jx1uB5wNP\nI509fCkiftBslmpzLOmM9oCcflleNtJntJWr13eMiJ9Xn5P0RlYf8jzKrs/Tx3dOcl4KXNdslvoX\nEefmh5sAP4mIlU3mp255tu21GuVr1KaqNTWSkpV6Rtsh6QzggxFxYk6/B9gjIvZpNmf1yDWuzzJ2\nEeIZwFtLufJb0jeAJwPfBb4SERc3nKVaVK5NE/AgoHOfo02Bv47yNWpT1ZoaSR4GfDgwh8oNaApp\nxyzyjLZif9KsuHeSph5/eF5WhIhYRhpdWKSIeJmk+wIHAgskBanG/K2IuLnZ3E1f59o0SUcBP4iI\nn+X0vqTWj9ZoTY0kX127X0Rc1HRe6lb6GS2ApPsDJwLnkGbJHfkdV9J7I+KIfAfIbiVdJwOApM2B\nVwBvJ01381DgMxHxmUYz1idJf4yIR020rGStqZEAy0sMIlDuGW2P0TDrkybGe1G+/nLUa5OdKdTP\n7fHcyAfKDknPBQ4mBY6vAk+MiGskbUT6DkY6kABXSfoAadSdSLcE+FuzWZpZbaqRfJo0++gPWf3q\n2pG/aC/ff+RTpHboINVI3hERl437RrMZIOmrwNG9ZmuWtGdEjPQ9ZSTdjzQp5VPzolOBD7mzvUAl\nX7SXb0X7OeC4vOglpKatf2kuV/XK08hvS6UWXdA08scz1mlLfnwTqRnvS227t4WNntYEkpJJ+n33\nxXmFjdrqOY18RBTRnCfpM8DmwLcYu8bpH8BKYJOIeEWD2Zu2tVyo11FC0ySwqv/uPcAjgA3z4oiI\nPZrL1cxqTR+JpGO7FnVuPvPqBrJTt59Leh/pQATpQPTzzjj3AqrYzwceVvA08k+JiCdU0j+WdE5E\nPEHSnxrLVZ8691mR9BHSzLjVK/cf0FS+BuAbpPsc7Ue6pcPBwLVNZmimtaZGIulFjJ0dbUg6OF1V\nyJXtyxj/zG/7GcxO7ST9HDhglIeKjiffz2KfzpX6krYFfhERO/a6++WoWUuNeY1lo6pzN9JqmTon\nAk3nbaa0pkYSEd+tpiV9E/hNQ9mphaRdgCsq49kPBl5ImoZ8fkE3Eip9Gvl3AadJ6gyO2B54k6SN\ngYXNZas2t0p6OWM15pcCtzSYn7p1Bu8sl7Qfqfa1aYP5mXGtqZF0k/Rw0rQND2k6L9Ml6XzgGRFx\ng6SnkarXbwEeBzw8Il7UaAZrkgNkt4iIEg6yAEjagHShZQCXlNTBLmk74NOk2zhAOoE7JA9bH3mS\nngOcBmxDup5rE9KJXPetD4rVmkDS1fEXwArg0Ij4XnO56k+1Q13S54FrI2J+93M2nCQ9IyJOrNx8\nrTpqa+Rvumbt0aamrVlN52EA1pV0r4i4C9gTeH3luZHftpVp5P9I72m6R72N/Wmkq/Wrd0isKiKQ\nFD7QBUkPA74AbBkRj5T0GGD/iPhIw1mbMa2pkQBI2pR0de0GnWWjfC2CpH8Hnk2aV2sbYOeIWCnp\nocCCiNi10Qz2qTKN/LaMna2vUkrTSOlKHugCIOlU4N+AL0bE4yQJ+GNEPLLhrM2Y1gQSSa8D3kY6\n4J5PmpfqzFEf6y3pyaQr9k+IiFvzsh2AWRFxXqOZq4Gk9YBFEbF703mpm6R39VjcaeKKKOee5qvJ\nN5X7TUQ8uem81KEyVHvVCDtJiyNip6bzNlNGvvljCg4BnkgKHrvnzvaPNZynvkXEmT2WLWkiL4MQ\nEXdLWilpdkTc2HR+anYfCppTawp2ALZoOhM1ulbSqkE7uQZ2dYP5mXFtCiR3RMTtkpC0QURcnNs2\nbfjdCvxB0qL8GAoY/tsZGFG6tQx0eW9zOardW4AvAw+TdBWwlHTRZWu0KZBckftIfggskvR30vUW\nNvy+z5odz8WcyZfeWVvoQJdVIuJS4BmSZpGaJW8h3a10WZP5mkmt6SOpyveQ3oR09fCdE7zchkCe\nzygioripJ0rvrJV0YkQ8Y6JloyYHjjcADwb+SLr183OBjwJ/iYhibr42kTbVSFaJiJMBJF1OukWm\nDaF8QD2M1HSwbl52D/DZiPhQk3mr2UYRcVYqboqWku5qOE99k7QhsBGwRZ73TaSa5CbA1k3mrSZf\nJU2ueSawN2mOrTuAf42IxQ3ma8a1MpBUrDGk1IbKO4BdSTdCWgogaXvgi5LeWdCoplI7a19Puhvi\nA1j95l03k257MOoeUplb62jSNts2Im5vNlszr5VNWx2SroiIbZrOh/UmaTGwV3dzlqQtSEOCixhe\nmW9M9mXSjcluJHfWjvp1MnkuuCuBF0XEZ7rmgjts1Gel7p5Qs4QJNqer+ECylrH6HR+IiFZNrjZK\nNM59r8d7blR1d9ZGxLcbzlJfSp8LLjez3lZZtCFpglEo6H4rk9GGpq3xxup/aiYzYlM2Xj9BCX0I\n43bWkg68o2ydSq3jJaS7PX4P+J6kCxrMVy0iYt2m8zAsiq+R2OjqccZXtWFEjPSJkKTvs3pn7Tak\nztq3ldBZm+dIe1xE3CXpEuD1EXFKfu5PpYxKs3bUSGxEteCMr/TO2m8Bp0i6jnRCcBpAnguutFkK\nWs2BxKw51fvP3yPpbwUFESLio5J+zdhccCvzUwKKmLDREjdtmTXEnbVWitYEkjx6q/vmQTcB55bQ\nHm1m1pR1ms7ADNoZeCPp4qitSaNl9gWOklTSBHLFknSfyuORvUWyWWnaVCM5Ddg3Im7J6VnAz4B9\nSLWSHZvMn01M0u+By0iduB+LiO0bzpKZ0a4ayRZAdYLGu4A5EXEbacilDRlJG0u6VyedRzidQAok\nhzaWMTNbTZsCyTeAsyQdJmk+cAbwTUkbAxc2mjNbm18Dm3cSkl4AvAvYDzioqUyZ2epa07QFIOmJ\npEkAg3Srz3MazpKNQ9IFEfHY/PgNwAdIU24skXRuROzcbA7NDNp3Hcl5wFWkcoekB0XE5Q3nydbu\nBkmHka74fjWwRw4i9wfuNf5bzWymtKZGIumtpHtbXMPqF4I9urFM2bgkbQ78P+CfpE72I4DTSbXK\nwyLiGw1mz8yyNgWSS4FdIuL6pvNi0yNpa1IQuSAiLmk6P2aWtCmQnATsHREjP2usmdkwaVMfyVLg\nJEk/ZWwYcBR0lz0zs0a0KZBcnv/Wz3+d+0ebmVkfWtO0ZWZmg1F8jUTSpyPiEEnH93g6ImL/Gc+U\nTYmkm3ssvgk4G3hXRFw2w1kys4riAwnw1fz/v3s85+rYaPg0cAVpahSAl5JuT3s+8BVgXjPZMjNo\nWdOWpHsDO5ACyCUewTUaJP2+cyfByrLFEbFT9ep3M2tGa+bakjQPWAJ8HvgC8GdJT280UzZZt0l6\niaR18t8BjE202Z4zIbMh1ZoaiaTzgAM7F7JJ2gE4LiIe32zObCKSHkxq3npSXvRb4O3A34CdI+L0\npvJmZu0KJL2aR9ZYZmZmU9OGzvaOcyUdDXyddA3JywDP/jsC8iSNrwPmMrbPRkS8urFMmdkqbaqR\nbAC8mTRXE8BpwBci4p/N5comQ9KZwKnAucDKvDgi4nvN5crMOloTSGDVmS0RcU3TebHJ64zQajof\nZtZb8aO2lMyXdB1wCXCJpOvynRLVdP5sUn4i6dlNZ8LMeiu+RiLpncC+wOsjYmletj3wReAXnrRx\n+Em6BdiINNlm59qfiIhNmsuVmXW0IZAsBvaKiGu7lm8BLHKTiZlZf9owamu97iACEBHXSmpD+UeW\npB0j4iJJPa/1iYjzZjpPZramNhxIx5sGxVOkDLd3kob9fpLeV7DvPrPZMbNe2tC0dQ9w21qe3jAi\n2hBMR5qkDSLijomWmVkzig8kNvokndc9lU2vZWbWDJ+N29CStBXwAGCj3E/SuavlJqRRXGY2BBxI\nbJjtDRwMbM3q95O5GXh/ExkyszW5acuGnqQXRcR3m86HmfXmQGIjQdJ+wCOADTrLIuLDzeXIzDqK\nnyLFRp+kLwEHAG8j9ZMcAGzbaKbMbBXXSGzoSfpDRDy6c/8YSbNI09vs1nTezMw1EhsNt+f/t0na\nGrgb2LLB/JhZhUdt2Sg4XtKmwMdJ9yQBOKrB/JhZhZu2bKTkG5RtEBE3Np0XM0vctGVDS9J7Ko9f\nDBARd0TEjZL+q7mcmVmVA4kNswMrj7svQNx3JjNiZmvnQGJmZn1xIDEzs764s92GVtctADZkbBgw\n+BYAZkPDgcTMzPripi0zM+uLA4mZmfXFgcTMzPriQGJmZn1xIDEzs744kJiZWV/+PxMXlGdG61Kk\nAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "men_women_df.plot(kind=\"bar\")\n",
+ "plt.title(\"Average time spent per day on activities by gender\", fontsize=15)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Merge data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "activities = pd.read_csv(\"atusdata/atusact_2013/atusact_2013.dat\")\n",
+ "respondent = pd.read_csv(\"atusdata/atusresp_2013/atusresp_2013.dat\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " TUCASEID | \n",
+ " TUACTIVITY_N | \n",
+ " TEWHERE | \n",
+ " TRTCCTOT_LN | \n",
+ " TRTCC_LN | \n",
+ " TRTCOC_LN | \n",
+ " TRTEC_LN | \n",
+ " TRTHH_LN | \n",
+ " TRTNOHH_LN | \n",
+ " TRTOHH_LN | \n",
+ " ... | \n",
+ " TUDURSTOP | \n",
+ " TUEC24 | \n",
+ " TUSTARTTIM | \n",
+ " TUSTOPTIME | \n",
+ " TUTIER1CODE | \n",
+ " TUTIER2CODE | \n",
+ " TUTIER3CODE | \n",
+ " TRCODE | \n",
+ " TRTIER2 | \n",
+ " TXWHERE | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 20130101130004 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 2 | \n",
+ " -1 | \n",
+ " 04:00:00 | \n",
+ " 12:00:00 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 10101 | \n",
+ " 101 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 20130101130004 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 12:00:00 | \n",
+ " 12:05:00 | \n",
+ " 11 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 110101 | \n",
+ " 1101 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20130101130004 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 120 | \n",
+ " 120 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 120 | \n",
+ " 120 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 12:05:00 | \n",
+ " 14:05:00 | \n",
+ " 12 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 120303 | \n",
+ " 1203 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 20130101130004 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 2 | \n",
+ " -1 | \n",
+ " 14:05:00 | \n",
+ " 19:00:00 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 60301 | \n",
+ " 603 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 20130101130004 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 30 | \n",
+ " 30 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 30 | \n",
+ " 30 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 19:00:00 | \n",
+ " 19:30:00 | \n",
+ " 11 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 110101 | \n",
+ " 1101 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 31 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " TUCASEID TUACTIVITY_N TEWHERE TRTCCTOT_LN TRTCC_LN TRTCOC_LN \\\n",
+ "0 20130101130004 1 -1 0 0 0 \n",
+ "1 20130101130004 2 1 5 5 0 \n",
+ "2 20130101130004 3 1 120 120 0 \n",
+ "3 20130101130004 4 1 0 0 0 \n",
+ "4 20130101130004 5 1 30 30 0 \n",
+ "\n",
+ " TRTEC_LN TRTHH_LN TRTNOHH_LN TRTOHH_LN ... TUDURSTOP TUEC24 \\\n",
+ "0 -1 0 0 -1 ... 2 -1 \n",
+ "1 -1 5 5 -1 ... 1 -1 \n",
+ "2 -1 120 120 -1 ... 1 -1 \n",
+ "3 -1 0 0 -1 ... 2 -1 \n",
+ "4 -1 30 30 -1 ... 1 -1 \n",
+ "\n",
+ " TUSTARTTIM TUSTOPTIME TUTIER1CODE TUTIER2CODE TUTIER3CODE TRCODE \\\n",
+ "0 04:00:00 12:00:00 1 1 1 10101 \n",
+ "1 12:00:00 12:05:00 11 1 1 110101 \n",
+ "2 12:05:00 14:05:00 12 3 3 120303 \n",
+ "3 14:05:00 19:00:00 6 3 1 60301 \n",
+ "4 19:00:00 19:30:00 11 1 1 110101 \n",
+ "\n",
+ " TRTIER2 TXWHERE \n",
+ "0 101 0 \n",
+ "1 1101 0 \n",
+ "2 1203 0 \n",
+ "3 603 0 \n",
+ "4 1101 0 \n",
+ "\n",
+ "[5 rows x 31 columns]"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "activities.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " TUCASEID | \n",
+ " TULINENO | \n",
+ " TUYEAR | \n",
+ " TUMONTH | \n",
+ " TEABSRSN | \n",
+ " TEERN | \n",
+ " TEERNH1O | \n",
+ " TEERNH2 | \n",
+ " TEERNHRO | \n",
+ " TEERNHRY | \n",
+ " ... | \n",
+ " TXSPEMPNOT | \n",
+ " TXSPUHRS | \n",
+ " TXTCC | \n",
+ " TXTCCTOT | \n",
+ " TXTCOC | \n",
+ " TXTHH | \n",
+ " TXTNOHH | \n",
+ " TXTO | \n",
+ " TXTOHH | \n",
+ " TXTONHH | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 20130101130004 | \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 20130101130112 | \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20130101130123 | \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 20130101130611 | \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 20130101130616 | \n",
+ " 1 | \n",
+ " 2013 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 2 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 175 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " TUCASEID TULINENO TUYEAR TUMONTH TEABSRSN TEERN TEERNH1O \\\n",
+ "0 20130101130004 1 2013 1 -1 -1 -1 \n",
+ "1 20130101130112 1 2013 1 -1 -1 -1 \n",
+ "2 20130101130123 1 2013 1 -1 -1 -1 \n",
+ "3 20130101130611 1 2013 1 -1 -1 -1 \n",
+ "4 20130101130616 1 2013 1 -1 -1 -1 \n",
+ "\n",
+ " TEERNH2 TEERNHRO TEERNHRY ... TXSPEMPNOT TXSPUHRS TXTCC \\\n",
+ "0 -1 -1 -1 ... -1 -1 0 \n",
+ "1 -1 -1 2 ... 0 0 0 \n",
+ "2 -1 -1 -1 ... 0 0 -1 \n",
+ "3 -1 -1 2 ... -1 -1 -1 \n",
+ "4 -1 -1 2 ... -1 -1 -1 \n",
+ "\n",
+ " TXTCCTOT TXTCOC TXTHH TXTNOHH TXTO TXTOHH TXTONHH \n",
+ "0 0 0 0 0 -1 -1 -1 \n",
+ "1 0 0 0 -1 0 0 -1 \n",
+ "2 0 0 -1 -1 -1 -1 -1 \n",
+ "3 0 0 -1 -1 -1 -1 -1 \n",
+ "4 0 0 -1 -1 -1 -1 -1 \n",
+ "\n",
+ "[5 rows x 175 columns]"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "respondent.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "data = pd.merge(activities, respondent)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " TUCASEID | \n",
+ " TUACTIVITY_N | \n",
+ " TEWHERE | \n",
+ " TRTCCTOT_LN | \n",
+ " TRTCC_LN | \n",
+ " TRTCOC_LN | \n",
+ " TRTEC_LN | \n",
+ " TRTHH_LN | \n",
+ " TRTNOHH_LN | \n",
+ " TRTOHH_LN | \n",
+ " ... | \n",
+ " TXSPEMPNOT | \n",
+ " TXSPUHRS | \n",
+ " TXTCC | \n",
+ " TXTCCTOT | \n",
+ " TXTCOC | \n",
+ " TXTHH | \n",
+ " TXTNOHH | \n",
+ " TXTO | \n",
+ " TXTOHH | \n",
+ " TXTONHH | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 20130101130004 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 20130101130004 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 5 | \n",
+ " 5 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20130101130004 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 120 | \n",
+ " 120 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 120 | \n",
+ " 120 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 20130101130004 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 20130101130004 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 30 | \n",
+ " 30 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " 30 | \n",
+ " 30 | \n",
+ " -1 | \n",
+ " ... | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ " -1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 205 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " TUCASEID TUACTIVITY_N TEWHERE TRTCCTOT_LN TRTCC_LN TRTCOC_LN \\\n",
+ "0 20130101130004 1 -1 0 0 0 \n",
+ "1 20130101130004 2 1 5 5 0 \n",
+ "2 20130101130004 3 1 120 120 0 \n",
+ "3 20130101130004 4 1 0 0 0 \n",
+ "4 20130101130004 5 1 30 30 0 \n",
+ "\n",
+ " TRTEC_LN TRTHH_LN TRTNOHH_LN TRTOHH_LN ... TXSPEMPNOT TXSPUHRS \\\n",
+ "0 -1 0 0 -1 ... -1 -1 \n",
+ "1 -1 5 5 -1 ... -1 -1 \n",
+ "2 -1 120 120 -1 ... -1 -1 \n",
+ "3 -1 0 0 -1 ... -1 -1 \n",
+ "4 -1 30 30 -1 ... -1 -1 \n",
+ "\n",
+ " TXTCC TXTCCTOT TXTCOC TXTHH TXTNOHH TXTO TXTOHH TXTONHH \n",
+ "0 0 0 0 0 0 -1 -1 -1 \n",
+ "1 0 0 0 0 0 -1 -1 -1 \n",
+ "2 0 0 0 0 0 -1 -1 -1 \n",
+ "3 0 0 0 0 0 -1 -1 -1 \n",
+ "4 0 0 0 0 0 -1 -1 -1 \n",
+ "\n",
+ "[5 rows x 205 columns]"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [],
+ "source": [
+ "data = data[['TUCASEID', 'TRCODE','TESCHENR', 'TESPEMPNOT', 'TRCHILDNUM']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " TUCASEID | \n",
+ " TRCODE | \n",
+ " TESCHENR | \n",
+ " TESPEMPNOT | \n",
+ " TRCHILDNUM | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 20130101130004 | \n",
+ " 10101 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 20130101130004 | \n",
+ " 110101 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 20130101130004 | \n",
+ " 120303 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 20130101130004 | \n",
+ " 60301 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 20130101130004 | \n",
+ " 110101 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 20130101130004 | \n",
+ " 30201 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 20130101130004 | \n",
+ " 120303 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 20130101130004 | \n",
+ " 10201 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 20130101130004 | \n",
+ " 60301 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 20130101130004 | \n",
+ " 10101 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 3 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 20130101130112 | \n",
+ " 10101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 20130101130112 | \n",
+ " 20903 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 20130101130112 | \n",
+ " 120312 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 20130101130112 | \n",
+ " 30103 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 20130101130112 | \n",
+ " 20201 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 20130101130112 | \n",
+ " 110101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 20130101130112 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 20130101130112 | \n",
+ " 10201 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 20130101130112 | \n",
+ " 30103 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 20130101130112 | \n",
+ " 180701 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 20130101130112 | \n",
+ " 70101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 20130101130112 | \n",
+ " 180701 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 20130101130112 | \n",
+ " 20902 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 20130101130112 | \n",
+ " 20201 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 20130101130112 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 20130101130112 | \n",
+ " 30103 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 20130101130112 | \n",
+ " 20201 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 20130101130112 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 20130101130112 | \n",
+ " 30103 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 20130101130112 | \n",
+ " 180703 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 215546 | \n",
+ " 20131212132475 | \n",
+ " 110101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 215547 | \n",
+ " 20131212132475 | \n",
+ " 500101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 215548 | \n",
+ " 20131212132475 | \n",
+ " 120303 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 215549 | \n",
+ " 20131212132475 | \n",
+ " 10101 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 215550 | \n",
+ " 20131212132488 | \n",
+ " 110101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215551 | \n",
+ " 20131212132488 | \n",
+ " 120303 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215552 | \n",
+ " 20131212132488 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215553 | \n",
+ " 20131212132488 | \n",
+ " 120303 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215554 | \n",
+ " 20131212132488 | \n",
+ " 120301 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215555 | \n",
+ " 20131212132488 | \n",
+ " 20201 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215556 | \n",
+ " 20131212132488 | \n",
+ " 110101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215557 | \n",
+ " 20131212132488 | \n",
+ " 120101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215558 | \n",
+ " 20131212132488 | \n",
+ " 10201 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215559 | \n",
+ " 20131212132488 | \n",
+ " 180305 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215560 | \n",
+ " 20131212132488 | \n",
+ " 30504 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215561 | \n",
+ " 20131212132488 | \n",
+ " 180802 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215562 | \n",
+ " 20131212132488 | \n",
+ " 80201 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215563 | \n",
+ " 20131212132488 | \n",
+ " 180207 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215564 | \n",
+ " 20131212132488 | \n",
+ " 20701 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215565 | \n",
+ " 20131212132488 | \n",
+ " 189999 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215566 | \n",
+ " 20131212132488 | \n",
+ " 500101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215567 | \n",
+ " 20131212132488 | \n",
+ " 189999 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215568 | \n",
+ " 20131212132488 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215569 | \n",
+ " 20131212132488 | \n",
+ " 20101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215570 | \n",
+ " 20131212132488 | \n",
+ " 20102 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215571 | \n",
+ " 20131212132488 | \n",
+ " 20201 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215572 | \n",
+ " 20131212132488 | \n",
+ " 110101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215573 | \n",
+ " 20131212132488 | \n",
+ " 120303 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215574 | \n",
+ " 20131212132488 | \n",
+ " 30101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " 215575 | \n",
+ " 20131212132488 | \n",
+ " 10101 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
215576 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " TUCASEID TRCODE TESCHENR TESPEMPNOT TRCHILDNUM\n",
+ "0 20130101130004 10101 1 -1 3\n",
+ "1 20130101130004 110101 1 -1 3\n",
+ "2 20130101130004 120303 1 -1 3\n",
+ "3 20130101130004 60301 1 -1 3\n",
+ "4 20130101130004 110101 1 -1 3\n",
+ "5 20130101130004 30201 1 -1 3\n",
+ "6 20130101130004 120303 1 -1 3\n",
+ "7 20130101130004 10201 1 -1 3\n",
+ "8 20130101130004 60301 1 -1 3\n",
+ "9 20130101130004 10101 1 -1 3\n",
+ "10 20130101130112 10101 2 1 1\n",
+ "11 20130101130112 20903 2 1 1\n",
+ "12 20130101130112 120312 2 1 1\n",
+ "13 20130101130112 30103 2 1 1\n",
+ "14 20130101130112 20201 2 1 1\n",
+ "15 20130101130112 110101 2 1 1\n",
+ "16 20130101130112 30101 2 1 1\n",
+ "17 20130101130112 10201 2 1 1\n",
+ "18 20130101130112 30103 2 1 1\n",
+ "19 20130101130112 180701 2 1 1\n",
+ "20 20130101130112 70101 2 1 1\n",
+ "21 20130101130112 180701 2 1 1\n",
+ "22 20130101130112 20902 2 1 1\n",
+ "23 20130101130112 20201 2 1 1\n",
+ "24 20130101130112 30101 2 1 1\n",
+ "25 20130101130112 30103 2 1 1\n",
+ "26 20130101130112 20201 2 1 1\n",
+ "27 20130101130112 30101 2 1 1\n",
+ "28 20130101130112 30103 2 1 1\n",
+ "29 20130101130112 180703 2 1 1\n",
+ "... ... ... ... ... ...\n",
+ "215546 20131212132475 110101 2 1 1\n",
+ "215547 20131212132475 500101 2 1 1\n",
+ "215548 20131212132475 120303 2 1 1\n",
+ "215549 20131212132475 10101 2 1 1\n",
+ "215550 20131212132488 110101 2 2 2\n",
+ "215551 20131212132488 120303 2 2 2\n",
+ "215552 20131212132488 30101 2 2 2\n",
+ "215553 20131212132488 120303 2 2 2\n",
+ "215554 20131212132488 120301 2 2 2\n",
+ "215555 20131212132488 20201 2 2 2\n",
+ "215556 20131212132488 110101 2 2 2\n",
+ "215557 20131212132488 120101 2 2 2\n",
+ "215558 20131212132488 10201 2 2 2\n",
+ "215559 20131212132488 180305 2 2 2\n",
+ "215560 20131212132488 30504 2 2 2\n",
+ "215561 20131212132488 180802 2 2 2\n",
+ "215562 20131212132488 80201 2 2 2\n",
+ "215563 20131212132488 180207 2 2 2\n",
+ "215564 20131212132488 20701 2 2 2\n",
+ "215565 20131212132488 189999 2 2 2\n",
+ "215566 20131212132488 500101 2 2 2\n",
+ "215567 20131212132488 189999 2 2 2\n",
+ "215568 20131212132488 30101 2 2 2\n",
+ "215569 20131212132488 20101 2 2 2\n",
+ "215570 20131212132488 20102 2 2 2\n",
+ "215571 20131212132488 20201 2 2 2\n",
+ "215572 20131212132488 110101 2 2 2\n",
+ "215573 20131212132488 120303 2 2 2\n",
+ "215574 20131212132488 30101 2 2 2\n",
+ "215575 20131212132488 10101 2 2 2\n",
+ "\n",
+ "[215576 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.4.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}