-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathepropnp_cdpn_init_long.yaml
113 lines (105 loc) · 2.96 KB
/
epropnp_cdpn_init_long.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (C) 2010-2021 Alibaba Group Holding Limited.
# This file is modified from
# https://github.com/LZGMatrix/CDPN_ICCV2019_ZhigangLi
pytorch:
exp_id: 'epropnp_cdpn_init_long'
task: 'rot' # 'rot | trans | rot_trans'
cfg: '' # path to configure file
gpu: 0
threads_num: 12
debug: False
save_mode: 'all' # 'all' | 'best', save all models or only save the best model
load_model: '../checkpoints/cdpn_stage_1.pth'
test: False
demo: False
dataset:
name: 'lm' # 'lm' | 'lmo'
classes: 'all' # 'all' represents train on all classes, or you can list specific classes for training
# - 'ape'
# - 'benchvise'
# - 'camera'
# - 'can'
# - 'cat'
# - 'driller'
# - 'duck'
# - 'eggbox'
# - 'glue'
# - 'holepuncher'
# - 'iron'
# - 'lamp'
# - 'phone'
img_type: 'real_imgn' # 'real' | 'imgn' | 'real_imgn'
syn_num: 1000
syn_samp_type: 'uniform' # 'uniform' | 'random'
dataiter:
inp_res: 256
out_res: 64
dzi: True
denoise_coor: True
augment:
change_bg_ratio: 0.5
pad_ratio: 1.5
scale_ratio: 0.25
shift_ratio: 0.25
network:
# ------ backbone -------- #
arch: 'resnet' # 'hg' | 'hg_refiner' | 'resnet' | 'resnet_refiner'
back_freeze: False
back_input_channel: 3 # # channels of backbone's input
# hourglass backbone
nFeats: 256 # # features in the hourglass'
nStack: 4 # # hourglasses to stack
nModules: 2 # # residual modules at each hourglass
# resnet backbone
numBackLayers: 34 # 18 | 34 | 50 | 101 | 152
back_filters: 256 # number of filters for each layer
# ------ rotation head -------- #
rot_head_freeze: False
rot_layers_num: 3
rot_filters_num: 256 # number of filters for each layer
rot_conv_kernel_size: 3 # kernel size for hidden layers
rot_output_conv_kernel_size: 1 # kernel size for output layer
rot_output_channels: 5 # # channels of output
# ------ translation head -------- #
trans_head_freeze: True
trans_layers_num: 3
trans_filters_num: 256
trans_conv_kernel_size: 3
trans_output_channels: 3
train:
begin_epoch: 0
end_epoch: 320
test_interval: 10
train_batch_size: 32
lr_backbone: 1e-4
lr_rot_head: 1e-4
lr_epoch_step:
- 100
- 200
- 300
lr_factor: 0.1
optimizer_name: 'RMSProp'
warmup_lr: 1e-5
warmup_step: 500
momentum: 0.0
weightDecay: 0.0
alpha: 0.99
epsilon: 1e-8
loss:
# coordinate regression loss
rot_loss_type: 'L1'
rot_loss_weight: 1
# Monte Carlo loss
mc_loss_weight: 0.02 # this value is small because the actual scale of the loss is large
# derivative regularization loss
t_loss_weight: 0.1
r_loss_weight: 0.1
test:
test_mode: 'all_fast' # 'pose' | 'add' | 'proj' | 'all' | 'pose_fast' | 'add_fast' | 'proj_fast' | 'all_fast'
# 'pose' means "#cm, #degrees", 'all' means evaluate on all metrics,
# 'fast' means the test batch size equals training batch size, otherwise 1
cache_file: ''
ignore_cache_file: True
detection: 'FasterRCNN'
disp_interval: 50
vis_demo: False